E(level)<sup>†</sup>

 $(1647^{\ddagger} 14)$ 

2566.72?

0.0024 4

1.59 23

7.12 7

### $^{203}$ Po $\varepsilon$ decay 1972Al25

|                 |              | History            |                        |
|-----------------|--------------|--------------------|------------------------|
| Туре            | Author       | Citation           | Literature Cutoff Date |
| Full Evaluation | F. G. Kondev | NDS 177, 509, 2021 | 4-Jul-2021             |

Parent: <sup>203</sup>Po: E=0;  $J^{\pi}=5/2^{-}$ ;  $T_{1/2}=36.7$  min 5;  $Q(\varepsilon)=4214$  14;  $\%\varepsilon+\%\beta^{+}$  decay=99.89 2

 $T_{1/2}$ 

1972Al25: Mass separated source produced using <sup>209</sup>Bi(p,7n) reaction E(p)=110 MeV; Detectors: Ge(Li), Si(Li); Measured:  $\gamma$ -ray singles;  $\gamma\gamma$  coin;  $\alpha$ (K)exp, E $\gamma$ , I $\gamma$ .

J<sup>π‡</sup>

Others: 1969A110, 1969Ho37, 1970DaZM, 1970Jo26. 1976Ko13 reports on  $\varepsilon$  decay of the  $J^{\pi}=13/2^+$  isomer in <sup>203</sup>Po. However, the reported daughter levels and gammas are not associated with <sup>203</sup>Bi, and hence, it is concluded by the evaluator that these results are unreliable.

## <sup>203</sup>Bi Levels

Comments

| 0#                                                                                                                                                                                                                                       | 9/2-                                                                                                                                                                                                                                                                                                                                |                                                                                 |                          |           |                                      |                                                                    |  |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------|--------------------------|-----------|--------------------------------------|--------------------------------------------------------------------|--|
| 883.39 <sup>@</sup> 19                                                                                                                                                                                                                   | 9 11/2-                                                                                                                                                                                                                                                                                                                             |                                                                                 |                          |           |                                      |                                                                    |  |
| 893.54 <sup>@</sup> 8                                                                                                                                                                                                                    | 5/2-                                                                                                                                                                                                                                                                                                                                |                                                                                 |                          |           |                                      |                                                                    |  |
| 908.72 <sup>@</sup> 7                                                                                                                                                                                                                    | $7/2^{-}$                                                                                                                                                                                                                                                                                                                           |                                                                                 |                          |           |                                      |                                                                    |  |
| 1090.98 <sup>&amp;</sup> 7                                                                                                                                                                                                               | 7/2-                                                                                                                                                                                                                                                                                                                                |                                                                                 |                          |           |                                      |                                                                    |  |
| 1098.21 <sup><i>a</i></sup> 9                                                                                                                                                                                                            | $1/2^+$                                                                                                                                                                                                                                                                                                                             | 305 m                                                                           | is 5                     |           |                                      |                                                                    |  |
| 1123.72 8                                                                                                                                                                                                                                | $(7/2)^{-}$                                                                                                                                                                                                                                                                                                                         |                                                                                 |                          |           |                                      |                                                                    |  |
| 1277.18 19                                                                                                                                                                                                                               | $(7/2)^{-}$                                                                                                                                                                                                                                                                                                                         |                                                                                 |                          |           |                                      |                                                                    |  |
| 1312.97 <mark>6</mark> 9                                                                                                                                                                                                                 | $3/2^{+}$                                                                                                                                                                                                                                                                                                                           | 410 ps                                                                          | s 30 T <sub>1/2</sub>    | : From 17 | 75ce(K)-215c                         | e(K)(Δt) in 1986Be07.                                              |  |
| 1352.84 8                                                                                                                                                                                                                                | 7/2-                                                                                                                                                                                                                                                                                                                                |                                                                                 |                          |           |                                      |                                                                    |  |
| 1488.14 <sup>C</sup> 10                                                                                                                                                                                                                  | $5/2^{+}$                                                                                                                                                                                                                                                                                                                           |                                                                                 |                          |           |                                      |                                                                    |  |
| 1609.82 13                                                                                                                                                                                                                               | $(5/2)^{-}$                                                                                                                                                                                                                                                                                                                         | +                                                                               |                          |           |                                      |                                                                    |  |
| 2135.88 10                                                                                                                                                                                                                               | (3/2,5/2)                                                                                                                                                                                                                                                                                                                           | +                                                                               |                          |           |                                      |                                                                    |  |
| 2231.10 11                                                                                                                                                                                                                               | (3/2, 5/2)                                                                                                                                                                                                                                                                                                                          | ·<br>· )                                                                        |                          |           |                                      |                                                                    |  |
| 2566 722 14                                                                                                                                                                                                                              | (3/2, 5/2)                                                                                                                                                                                                                                                                                                                          | $\frac{1}{2}$                                                                   |                          |           |                                      |                                                                    |  |
| 2689.45? 10                                                                                                                                                                                                                              | $(3/2^{-},5/2)$                                                                                                                                                                                                                                                                                                                     | 2.7/2)                                                                          |                          |           |                                      |                                                                    |  |
| 2752.14 14                                                                                                                                                                                                                               | (3/2,5/2,                                                                                                                                                                                                                                                                                                                           | 7/2)                                                                            |                          |           |                                      |                                                                    |  |
| 3130.52 17                                                                                                                                                                                                                               | (3/2,5/2+                                                                                                                                                                                                                                                                                                                           | )                                                                               |                          |           |                                      |                                                                    |  |
| <ul> <li><sup>†</sup> From a le</li> <li><sup>‡</sup> From Ad</li> <li><sup>#</sup> Configure</li> <li><sup>@</sup> Configure</li> <li><sup>a</sup> Configure</li> <li><sup>b</sup> Configure</li> <li><sup>c</sup> Configure</li> </ul> | east-squares<br>lopted Levels<br>ation= $\pi$ (h <sup>+1</sup> <sub>9/2</sub><br>ation= $\pi$ (f <sup>+1</sup> <sub>9/2</sub><br>ation= $\pi$ (f <sup>+1</sup> <sub>1/2</sub> ,<br>ation= $\pi$ (s <sup>+1</sup> <sub>1/2</sub> ,<br>ation= $\pi$ (d <sup>+1</sup> <sub>3/2</sub><br>ation= $\pi$ (d <sup>+1</sup> <sub>5/2</sub> ) | fit to $E\gamma$ .<br>s, unless otherw).<br>) $\otimes 2^+$ .<br>).<br>).<br>). | wise stated.             |           |                                      |                                                                    |  |
|                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                     |                                                                                 |                          |           | $\varepsilon, \beta^+$ radiat        | ions                                                               |  |
|                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                     |                                                                                 |                          |           |                                      |                                                                    |  |
| E(decay)                                                                                                                                                                                                                                 | E(level)                                                                                                                                                                                                                                                                                                                            | $I\beta^+$                                                                      | $I\varepsilon^{\dagger}$ | Log ft    | $I(\varepsilon + \beta^+)^{\dagger}$ | Comments                                                           |  |
| (1083 14)                                                                                                                                                                                                                                | 3130.52                                                                                                                                                                                                                                                                                                                             |                                                                                 | 1.98 20                  | 6.64 5    | 1.98 20                              | εK=0.7868 4; εL=0.1598 3; εM+=0.05340 11                           |  |
| (1462 14)                                                                                                                                                                                                                                | 2752.14                                                                                                                                                                                                                                                                                                                             |                                                                                 | 0.93 12                  | 7.25 6    | 0.93 12                              | εK=0.7932 2; εL=0.1549 2; εM+=0.05148 6                            |  |
| $(1525^{\ddagger} 14)$                                                                                                                                                                                                                   | 2689.45?                                                                                                                                                                                                                                                                                                                            | 0.00118 27                                                                      | 1.92.23                  | 6.97.6    | 1.92.23                              | av E <i>B</i> =249.0 68; <i>E</i> K=0.7938 2; <i>E</i> L=0.1544 2; |  |

Continued on next page (footnotes at end of table)

*є*М+=0.05125 б

av Eβ=303.8 67; εK=0.7944; εL=0.1533 2;

1.59 23

## $^{203}$ Po $\varepsilon$ decay 1972Al25 (continued)

## $\epsilon, \beta^+$ radiations (continued)

| E(decay)               | E(level) | I $\beta^+$ † | $\mathrm{I}\varepsilon^{\dagger}$ | Log ft                      | $\mathrm{I}(\varepsilon + \beta^+)^{\dagger}$ | Comments                                                                                                     |
|------------------------|----------|---------------|-----------------------------------|-----------------------------|-----------------------------------------------|--------------------------------------------------------------------------------------------------------------|
|                        |          |               |                                   |                             |                                               | εM+=0.05083 5                                                                                                |
| (1927 <sup>‡</sup> 14) | 2287.06? | 0.0080 11     | 1.31 16                           | 7.35 6                      | 1.32 16                                       | av Eβ=427.1 68; εK=0.7931 2; εL=0.1509 2;<br>εM+=0.04994 5                                                   |
| (1983 14)              | 2231.16  | 0.037 3       | 4.9 <i>3</i>                      | 6.80 <i>3</i>               | 4.9 <i>3</i>                                  | av Eβ=451.6 66; εK=0.7923 3; εL=0.1504 2;<br>εM+=0.04975 5                                                   |
| (2078 14)              | 2135.88  | 0.099 7       | 9.4 5                             | 6.560 25                    | 9.5 5                                         | av Eβ=493.3 66; εK=0.7906 4; εL=0.1495 2;<br>εM+=0.04943 6                                                   |
| (2604 14)              | 1609.82  | 0.086 8       | 2.07 17                           | 7.42 4                      | 2.16 18                                       | av Eβ=723.3 66; εK=0.7696 9; εL=0.14339 22;<br>εM+=0.04729 8                                                 |
| (2726 14)              | 1488.14  | 0.28 5        | 5.3 10                            | 7.05 8                      | 5.6 10                                        | av Eβ=776.7 66; εK=0.7619 11; εL=0.14158 24;<br>εM+=0.04667 8                                                |
| (2861 14)              | 1352.84  | 0.18 4        | 2.7 6                             | 7.39 9                      | 2.9 6                                         | av Eβ=836.1 66; εK=0.7520 12; εL=0.1394 3;<br>εM+=0.04592 9                                                  |
| (2901 14)              | 1312.97  | 0.59 13       | 8.2 18                            | 6.92 10                     | 8.8 19                                        | av E $\beta$ =853.6 66; $\varepsilon$ K=0.7488 13; $\varepsilon$ L=0.1387 3;<br>$\varepsilon$ M+=0.04569 9   |
| (2937 14)              | 1277.18  | 0.26 12       | 3.4 16                            | 7.31 20                     | 3.7 17                                        | av E $\beta$ =869.4 66; $\varepsilon$ K=0.7459 13; $\varepsilon$ L=0.1380 3;<br>$\varepsilon$ M+=0.04548 9   |
| (3090 14)              | 1123.72  | 1.76 15       | 18.2 15                           | 6.63 4                      | 20.0 16                                       | av Eβ=936.9 67; εK=0.7323 15; εL=0.1352 3;<br>εM+=0.04451 10                                                 |
| (3116 14)              | 1098.21  | 0.1 1         | 53                                | 8.8 <sup>1</sup> <i>u</i> 3 | 53                                            | av E $\beta$ =936.2 63; $\varepsilon$ K=0.7711 5; $\varepsilon$ L=0.14968 17;<br>$\varepsilon$ M+=0.04970 6  |
| (3123 14)              | 1090.98  | 1.42 20       | 14.0 20                           | 6.75 7                      | 15.4 22                                       | av $E\beta$ =951.3 67; $\varepsilon$ K=0.7292 15; $\varepsilon$ L=0.1345 3;<br>$\varepsilon$ M+=0.04430 10   |
| (3305 14)              | 908.72   | 1.0 3         | 8 <i>3</i>                        | 7.05 15                     | 9.0 30                                        | av $E\beta$ =1031.8 67; $\varepsilon$ K=0.7106 17; $\varepsilon$ L=0.1308 4;<br>$\varepsilon$ M+=0.04303 11  |
| (3320 14)              | 893.54   | 0.40 19       | 3.0 14                            | 7.47 21                     | 3.4 16                                        | av E $\beta$ =1038.6 67; $\varepsilon$ K=0.7090 17; $\varepsilon$ L=0.1304 4;<br>$\varepsilon$ M+=0.04292 11 |

<sup>†</sup> Absolute intensity per 100 decays.
<sup>‡</sup> Existence of this branch is questionable.

# $\gamma(^{203}{\rm Bi})$

I $\gamma$  normalization: Using  $\Sigma I(\gamma+ce)$ (to g.s.)=100% and by assuming that there is no direct feeding to the g.s.

| $E_{\gamma}^{\dagger}$           | $I_{\gamma}^{\dagger a}$ | E <sub>i</sub> (level) | $\mathbf{J}_i^{\pi}$ | $E_f$ J <sup>2</sup> | $f_{f}$ Mult. <sup>‡</sup> | $\delta^{\ddagger}$ | α <b>&amp;</b> | Comments                                                                                                                                                                                                                                                                                                                                      |
|----------------------------------|--------------------------|------------------------|----------------------|----------------------|----------------------------|---------------------|----------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| x140.2 <sup>#</sup> 2<br>175.2 1 | 0.5 2<br>5.4 5           | 1488.14                | 5/2+                 | 1312.97 3/2          | + M1(+E2)                  | 0.2 2               | 2.02 14        | %I $\gamma$ =0.28 11<br>%I $\gamma$ =2.97 28<br>$\alpha$ (K)=1.63 15; $\alpha$ (L)=0.296 9; $\alpha$ (M)=0.070 3<br>$\alpha$ (N)=0.0179 8; $\alpha$ (O)=0.00365 12; $\alpha$ (P)=0.000427 9<br>Mult., $\delta$ : $\alpha$ (K)exp=1.9 2. Others: $\alpha$ (K)exp=1.6 1, K/L=5                                                                  |
| 182.3 <i>1</i>                   | 0.2 1                    | 1090.98                | 7/2-                 | 908.72 7/2           | - M1                       |                     | 1.85           | (1969A110).<br>%I $\gamma$ =0.11 5<br>$\alpha$ (K)=1.506 22; $\alpha$ (L)=0.262 4; $\alpha$ (M)=0.0617 9<br>$\alpha$ (N)=0.01579 23; $\alpha$ (O)=0.00323 5; $\alpha$ (P)=0.000384 6<br>Multi $\alpha$ (K)=1.0.2 (1072 A125); $\alpha$ (K)=1.8.2 (1060 A110)                                                                                  |
| 186.5 5                          | ≤4.9                     | 1277.18                | (7/2) <sup>-</sup>   | 1090.98 7/2          | - M1(+E2)                  | <1.5                | 1.3 4          | Mult.: $\alpha(K)\exp=1.9.2$ (1972A123); $\alpha(K)\exp=1.8.3$ (1969A110).<br>%I $\gamma \le 2.69$<br>$\alpha(K)=1.0.5$ ; $\alpha(L)=0.258$ 13; $\alpha(M)=0.063$ 6<br>$\alpha(N)=0.0162$ 15; $\alpha(O)=0.00318$ 18; $\alpha(P)=0.00033$ 3<br>$E_{\gamma,I_{\gamma}}$ ,Mult., $\delta$ : From adopted gammas. E $\gamma$ was not observed in |
| 189.5 <i>1</i>                   | 7.0 6                    | 1098.21                | 1/2+                 | 908.72 7/2           | - E3                       |                     | 5.63           | %Iγ=3.84 34<br>$\alpha$ (K)=0.473 7; $\alpha$ (L)=3.79 6; $\alpha$ (M)=1.050 15<br>$\alpha$ (N)=0.270 4; $\alpha$ (O)=0.0501 8; $\alpha$ (P)=0.00397 6<br>What $\alpha$ (C)=0.0501 8; $\alpha$ (P)=0.00397 6                                                                                                                                  |
| 197.4 2                          | 1.0 3                    | 1090.98                | 7/2-                 | 893.54 5/2           | - M1+E2                    | -0.3                | 1.396          | Mult. $\alpha$ (K)exp=0.475 (1972Al25), $\alpha$ (K)exp=0.474 (1909Al10).<br>%Iγ=0.55 17<br>$\alpha$ (K)=1.120 16; $\alpha$ (L)=0.211 3; $\alpha$ (M)=0.0500 8<br>$\alpha$ (N)=0.01279 19; $\alpha$ (O)=0.00259 4; $\alpha$ (P)=0.000300 5<br>Mult.: $\alpha$ (K)exp=1.5 5(1972Al25); $\alpha$ (K)exp=1.4 1 (1969Al10).                       |
| 204.7 1                          | 0.9 <i>3</i>             | 1098.21                | 1/2+                 | 893.54 5/2           | - M2+E3                    | 3.4 4               | 4.04 8         | % Iy=0.49 16<br>$\alpha(K)=0.74$ 9; $\alpha(L)=2.43$ 5; $\alpha(M)=0.668$ 12<br>$\alpha(N)=0.171$ 3; $\alpha(O)=0.0320$ 6; $\alpha(P)=0.00260$ 4<br>Mult., $\delta$ : $\alpha(K)$ exp=0.8 3 (1972Al25); $\alpha(K)$ exp=0.75 6, K/L=0.3<br>(1060Al10)                                                                                         |
| 214.8 <i>I</i>                   | 26 2                     | 1123.72                | (7/2)-               | 908.72 7/2           | - M1+E2                    | 3.9 1               | 0.401 7        | (1)(9)(4)(7)(7)(7)(7)(7)(7)(7)(7)(7)(7)(7)(7)(7)                                                                                                                                                                                                                                                                                              |
| 214.8 <i>I</i>                   | 26 2                     | 1312.97                | 3/2+                 | 1098.21 1/2          | + M1+E2                    | 3.6 +10-6           | 0.409 24       | %Iγ=14.3 <i>II</i><br>α(K)=0.201 24; $α(L)=0.1558$ 23; $α(M)=0.0405$ 6<br>α(N)=0.01032 <i>I</i> 5; $α(O)=0.00194$ 3; $α(P)=0.000166$ 4<br>Mult.,δ: $α(K)$ exp=0.21 2. Others: $α(K)$ exp=0.18 2, K/L=1.2<br>(1969 Δ110)                                                                                                                       |
| 240.4 5                          | 0.85 9                   | 1123.72                | (7/2)-               | 883.39 11/           | 2 <sup>-</sup> (E2)        |                     | 0.241          | %Iy=0.47 5                                                                                                                                                                                                                                                                                                                                    |

|                                               |                            |                        |                      |                  |                      | <sup>203</sup> Po ε deca | y <b>1972</b>       | Al25 (conti        | nued)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |  |
|-----------------------------------------------|----------------------------|------------------------|----------------------|------------------|----------------------|--------------------------|---------------------|--------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| $\gamma$ <sup>(203</sup> Bi) (continued)      |                            |                        |                      |                  |                      |                          |                     |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |  |
| $E_{\gamma}^{\dagger}$                        | $I_{\gamma}^{\dagger a}$   | E <sub>i</sub> (level) | $\mathbf{J}_i^{\pi}$ | $\mathrm{E}_{f}$ | $\mathbf{J}_f^{\pi}$ | Mult. <sup>‡</sup>       | $\delta^{\ddagger}$ | α <sup>&amp;</sup> | Comments                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |  |
| 261.8 <i>1</i>                                | 2.1 7                      | 1352.84                | 7/2-                 | 1090.98          | 7/2-                 | M1+E2                    | 1.6 3               | 0.32 5             | α(K)=0.1101 17;  α(L)=0.0975 16;  α(M)=0.0255 5          α(N)=0.00648 11;  α(O)=0.001217 20;  α(P)=0.0001027 17          Eγ,Iγ,Mult.: From adopted gammas. Eγ was not observed in          203Po ε decay.          %Iγ=1.2 4          α(K)=0.22 5;  α(L)=0.077 3;  α(M)=0.0192 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |  |
| x336 0 <sup>@</sup> 1                         | 8 <sup>@</sup> 3           |                        |                      |                  |                      |                          |                     |                    | $\alpha$ (N)=0.00491 <i>13</i> ; $\alpha$ (O)=0.00095 <i>3</i> ; $\alpha$ (P)=9.2×10 <sup>-5</sup> <i>6</i><br>Mult., $\delta$ : From adopted gammas.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |  |
| 389.9 2                                       | 2.0 2                      | 1488.14                | 5/2+                 | 1098.21          | 1/2+                 | E2                       |                     | 0.0575             | $\% I_{\gamma} = 1.476$<br>$\% I_{\gamma} = 1.10 II$<br>$\alpha(K) = 0.0366 6; \alpha(L) = 0.01575 23; \alpha(M) = 0.00400 6$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |
| 419.3 <i>1</i>                                | 4.4 4                      | 1312.97                | 3/2+                 | 893.54           | 5/2-                 | E1                       |                     | 0.01439            | $\alpha(N) = 0.001020 \ I5; \ \alpha(O) = 0.000196 \ 3; \ \alpha(P) = 1.83 \times 10^{-5} \ 3$<br>Mult: $\alpha(K) \exp = 0.048 \ II$ . Others: $\alpha(K) \exp = 0.034 \ II \ (1969A110)$ .<br>$\% I_Y = 2.42 \ 22$<br>$\alpha(K) = 0.01183 \ I7; \ \alpha(L) = 0.00196 \ 3; \ \alpha(M) = 0.000457 \ 7$<br>$\alpha(N) = 0.0001160 \ I7; \ \alpha(O) = 2.33 \times 10^{-5} \ 4; \ \alpha(P) = 2.63 \times 10^{-6} \ 4$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |  |
| <sup>x</sup> 443.4 <i>3</i>                   | 0.5 2                      |                        |                      |                  |                      | (M1)                     |                     | 0.1614             | Mult.: $\alpha$ (K)exp≤0.012. Others: $\alpha$ (K)exp=0.008 5 (1969A110).<br>%I $\gamma$ =0.27 11<br>$\alpha$ (K)=0.1319 19; $\alpha$ (L)=0.0226 4; $\alpha$ (M)=0.00529 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |  |
| 486.1 <i>1</i>                                | 3.8 <i>3</i>               | 1609.82                | (5/2) <sup>-</sup>   | 1123.72          | (7/2)-               | E2                       |                     | 0.0329             | $\alpha(N)=0.001354\ 20;\ \alpha(O)=0.000277\ 4;\ \alpha(P)=3.30\times10^{-5}\ 5$<br>Mult.: $\alpha(K)\exp=0.10\ 6$ .<br>$\%I\gamma=2.09\ 17$<br>$\alpha(K)=0.0228\ 4;\ \alpha(L)=0.00761\ 11;\ \alpha(M)=0.00191\ 3$<br>$\alpha(N)=0.000486\ 7;\ \alpha(O)=9.43\times10^{-5}\ 14;\ \alpha(P)=9.24\times10^{-6}\ 13$<br>$E_{\gamma}:$ Placement from 1982Lo14.<br>Mult: $\alpha(K)\exp=0.022\ 8$ . Others: $\alpha(K)\exp=0.022\ 6\ (1969A110)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |  |
| x512.5 <sup>@</sup> 3<br>647.7 1              | 20 <sup>@</sup> 3<br>3.7 3 | 2135.88                | (3/2,5/2)+           | 1488.14          | 5/2+                 | M1(+E2)                  | <0.5                | 0.055 5            | %I $\gamma$ =11.0 17<br>%I $\gamma$ =2.03 17<br>$\alpha$ (K)=0.045 4; $\alpha$ (L)=0.0077 5; $\alpha$ (M)=0.00181 12<br>$\alpha$ (K)=0.0006 3; $\alpha$ (O)=0.5×10 <sup>-5</sup> 7; $\alpha$ (P)=1.12×10 <sup>-5</sup> 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |  |
| 743.0 1                                       | 1.1 2                      | 2231.16                | (3/2,5/2)+           | 1488.14          | 5/2+                 | M1(+E2)                  | <1.9                | 0.030 12           | $\begin{array}{l} \alpha(N)=0.00463, \alpha(O)=9.3\times10^{-7}, \alpha(F)=1.12\times10^{-8} \\ \text{Mult.,} \delta: \ \alpha(K) \exp=0.051 \ \delta. \ \text{Others:} \ \alpha(K) \exp=0.04 \ 1 \ (1969\text{A}110). \\ \Re[\gamma=0.60 \ 11 \\ \alpha(K)=0.024 \ 10; \ \alpha(L)=0.0044 \ 14; \ \alpha(M)=0.0010 \ 3 \\ \alpha(N)=0.00026 \ \delta; \ \alpha(O)=5.4\times10^{-5} \ 17; \ \alpha(P)=6.3\times10^{-6} \ 22 \\ \text{Mult.} \delta: \ \alpha(K) \exp=0.022 \ 10 \\ \Re[\gamma=0.0026 \ 10] \\ \Re[\gamma=0.0026 \ 10] \\ \Re[\gamma=0.0026 \ 10] \\ \Re[\gamma=0.0022 \ 10] \\ \Re[\gamma=0.0026 \ 10] \\$ |  |  |
| <sup>x</sup> 779.0 <i>1</i><br>799.0 <i>1</i> | 1.1 2<br>≈1.1              | 2287.06?               | (3/2,5/2+)           | 1488.14          | 5/2+                 |                          |                     |                    | Mult., 0. $\alpha$ (X)exp=0.055 10.<br>%Iy=0.60 11<br>%Iy≈0.604<br>E <sub>y</sub> : From Figure 4 of 1972Al25.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |  |
| 822.9 1                                       | 4.3 <i>3</i>               | 2135.88                | (3/2,5/2)+           | 1312.97          | 3/2+                 | M1(+E2)                  | <1.2                | 0.025 7            | compared to $I\gamma(743.0\gamma)=1.1$ .<br>% $I\gamma=2.36$ 17<br>$\alpha(K)=0.021$ 6; $\alpha(L)=0.0036$ 8; $\alpha(M)=0.00085$ 18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |  |

4

<sup>203</sup>Bi<sub>120</sub>-4

L

|                                          |                          |                        |                    |         | 2                    | <sup>203</sup> Po ε deca | y <b>1972</b> A     | 125 (continue    | ed)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |  |
|------------------------------------------|--------------------------|------------------------|--------------------|---------|----------------------|--------------------------|---------------------|------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| $\gamma$ <sup>(203</sup> Bi) (continued) |                          |                        |                    |         |                      |                          |                     |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |  |
| ${\rm E_{\gamma}}^{\dagger}$             | $I_{\gamma}^{\dagger a}$ | E <sub>i</sub> (level) | $\mathbf{J}_i^\pi$ | $E_f$   | $\mathbf{J}_f^{\pi}$ | Mult. <sup>‡</sup>       | $\delta^{\ddagger}$ | α <b>&amp;</b>   | Comments                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |  |
| 883.4 2                                  | 3.9 18                   | 883.39                 | 11/2-              | 0       | 9/2-                 |                          |                     |                  | $\alpha(N)=0.00022 5; \alpha(O)=4.4\times10^{-5} 10; \alpha(P)=5.2\times10^{-6} 12$<br>Mult., $\delta$ : $\alpha(K)\exp=0.023 10.$<br>%Iy=2.1 10<br>$E_{\gamma}$ : From adopted gammas. $E\gamma=883.5$ keV 10 in 1969Ho37.<br>L: From $\mu(883 4\gamma)/\mu(1001 9\gamma)=0.115$ in 1969Ho37 and                                                                                                                                                                                                                                                                                    |  |  |
| 893.5 1                                  | 34 2                     | 893.54                 | 5/2-               | 0       | 9/2-                 | E2                       |                     | 0.00873          | From $\Gamma(003, 4\gamma)(1091, 9\gamma)=0.11$ s in $\Gamma(003, 4\gamma)(1091, 9\gamma)=35$ 2 in $1972A125$ .<br>% $\Gamma\gamma=18.7$ 9<br>$\alpha(K)=0.00684$ 10; $\alpha(L)=0.001434$ 20; $\alpha(M)=0.000345$ 5<br>$\alpha(N)=8.80\times10^{-5}$ 13; $\alpha(O)=1.758\times10^{-5}$ 25; $\alpha(P)=1.93\times10^{-6}$ 3                                                                                                                                                                                                                                                        |  |  |
| 908.6 1                                  | 100                      | 908.72                 | 7/2-               | 0       | 9/2-                 | M1+E2                    | 0.96 20             | 0.0169 <i>19</i> | $\begin{aligned} \alpha(N) = 0.836 \times 10^{-13}, \ \alpha(O) = 1.138 \times 10^{-23}, \ \alpha(I) = 1.93 \times 10^{-5} \text{ S} \\ \text{Mult.: } \ \alpha(K) = 0.0076 \ 20 \ (1972 \text{Al25}). \\ \% \text{I}\gamma = 54.9 \ 10 \\ \alpha(K) = 0.0137 \ 16; \ \alpha(L) = 0.00242 \ 23; \ \alpha(M) = 0.00057 \ 6 \\ \alpha(N) = 0.000146 \ 14; \ \alpha(O) = 3.0 \times 10^{-5} \ 3; \ \alpha(P) = 3.5 \times 10^{-6} \ 4 \\ \text{Mult.} \ \delta: \ \alpha(K) \text{exp} = 0.017 \ 2 \ (1972 \text{Al25}) \text{ and } \ \alpha(K) \text{exp} = 0.013 \ 1, \end{aligned}$ |  |  |
| 918.1 <i>1</i>                           | 1.5 2                    | 2231.16                | (3/2,5/2)+         | 1312.97 | 3/2+                 | [M1,E2]                  |                     | 0.0240           | K/L=5 (1969A110).<br>%I $\gamma$ =0.82 <i>11</i><br>$\alpha$ (K)=0.0197 <i>3</i> ; $\alpha$ (L)=0.00329 <i>5</i> ; $\alpha$ (M)=0.000770 <i>11</i><br>$\alpha$ (K)=0.000107 <i>2</i> ; $\alpha$ (Q)=4.02;(10 <sup>-5</sup> ) 6; $\alpha$ (M)=0.000770 <i>11</i>                                                                                                                                                                                                                                                                                                                      |  |  |
| x955.3 4<br>973.9 2                      | $0.6 \ 1$<br>0.9 2       | 2287.06?               | (3/2,5/2+)         | 1312.97 | 3/2+                 |                          |                     |                  | $\alpha(N)=0.0001975; \alpha(O)=4.05\times10^{-6} 0; \alpha(P)=4.81\times10^{-7}$<br>%I $\gamma=0.336$<br>%I $\gamma=0.4911$                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |  |
| 1026.4 4<br>1037.7 4                     | 18° 4<br>0.5 2           | 2135.88                | (3/2,5/2)+         | 1098.21 | 1/2+                 | [M1,E2]                  |                     | 0.01748          | % $\gamma=9.9.22$<br>% $\gamma=0.27$ 11<br>$\alpha(K)=0.01435$ 21; $\alpha(L)=0.00239$ 4; $\alpha(M)=0.000560$ 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |  |
| 1090.9 <i>I</i>                          | 35 2<br>1 4 2            | 1090.98                | 7/2-               | 0       | 9/2-                 | M1+E2                    | 0.51 22             | 0.0134 <i>14</i> | $ α(N)=0.0001431 20; α(O)=2.93×10^{-5} 3; α(P)=3.50×10^{-5} 5 %Iγ=19.2 9 α(K)=0.0110 12; α(L)=0.00186 17; α(M)=0.00043 4 α(N)=0.000111 10; α(O)=2.27×10^{-5} 21; α(P)=2.7×10^{-6} 3 Mult.,δ: from α(K)exp=0.011 1 (1969A110). Other: α(K)exp=0.0019 6 (1972A125). %Iγ=0.77 11$                                                                                                                                                                                                                                                                                                       |  |  |
| 1098.1 <sup>b</sup>                      | <0.007                   | 1098.21                | 1/2+               | 0       | 9/2-                 | [M4]                     |                     | 0.1210           | % $I_{y} < 0.00384$<br>$\alpha(K) = 0.0905 \ 13; \ \alpha(L) = 0.0230 \ 4; \ \alpha(M) = 0.00570 \ 8$<br>$\alpha(N) = 0.001471 \ 21; \ \alpha(O) = 0.000297 \ 5; \ \alpha(P) = 3.35 \times 10^{-5} \ 5$                                                                                                                                                                                                                                                                                                                                                                              |  |  |
| 1123.9 <i>1</i>                          | 2.9 3                    | 1123.72                | (7/2)-             | 0       | 9/2-                 | M1+E2                    | 3.6 8               | 0.0062 4         | E <sub>γ</sub> ,I <sub>γ</sub> : From adopted gammas. Not seen in <sup>203</sup> Po ε decay.<br>%Iγ=1.59 <i>16</i><br>$\alpha$ (K)=0.0050 <i>3</i> ; $\alpha$ (L)=0.00093 <i>5</i> ; $\alpha$ (M)=0.000220 <i>11</i><br>$\alpha$ (N)=5.6×10 <sup>-5</sup> <i>3</i> ; $\alpha$ (O)=1.13×10 <sup>-5</sup> <i>6</i> ; $\alpha$ (P)=1.29×10 <sup>-6</sup> <i>8</i> ;                                                                                                                                                                                                                     |  |  |
| 1133.1 2                                 | 1.0 2                    | 2231.16                | (3/2,5/2)+         | 1098.21 | 1/2+                 | [M1,E2]                  |                     | 0.01394          | $\alpha$ (IPF)=4.05×10 <sup>-7</sup> 16<br>Mult., $\delta$ : From adopted gammas.<br>%I $\gamma$ =0.55 11<br>$\alpha$ (K)=0.01145 16; $\alpha$ (L)=0.00191 3; $\alpha$ (M)=0.000446 7<br>$\alpha$ (N)=0.0001139 16; $\alpha$ (O)=2.33×10 <sup>-5</sup> 4; $\alpha$ (P)=2.79×10 <sup>-6</sup> 4;<br>$\alpha$ (IPF)=1.031×10 <sup>-6</sup> 17                                                                                                                                                                                                                                          |  |  |

S

From ENSDF

<sup>203</sup><sub>83</sub>Bi<sub>120</sub>-5

 $^{203}_{83}{
m Bi}_{120}$ -5

L

| $\frac{\gamma(^{203}\text{Bi}) \text{ (continued)}}{\overset{x_{1138,1}\#}{x_{1138,1}}} \xrightarrow{\text{I}_{\gamma}^{\dagger a}} \underbrace{\text{E}_{i}(\text{level})}_{i} \xrightarrow{\text{J}_{i}^{\pi}} \underbrace{\text{E}_{f}}_{i} \underbrace{\text{J}_{f}^{\pi}}_{j} \underbrace{\text{Mult.}^{\ddagger}}_{j} \underbrace{\delta^{\ddagger}}_{j} \underbrace{\alpha^{\&}}_{j} \xrightarrow{\gamma_{i}^{6}}_{j} \\ \xrightarrow{x_{1150,1}} \xrightarrow{\psi_{i}^{4}} \underbrace{0.4.2}_{i} \xrightarrow{y_{i}^{6}}_{i} \underbrace{3/2,5/2^{+}}_{i} \underbrace{1098.21}_{i} \frac{1/2^{+}}{i} \\ \xrightarrow{1201.6} \xrightarrow{\psi_{i}^{4}} \underbrace{0.4.2}_{i} \underbrace{2689.45?}_{i} \underbrace{(3/2^{-},5/2,7/2)}_{i} \underbrace{1488.14}_{i} \underbrace{5/2^{+}}_{i} \underbrace{5/2^{-}}_{i} \underbrace{E_{i}^{6}} \underbrace{0.00181}_{i} \underbrace{\gamma_{i}^{6}}_{j} \\ \xrightarrow{y_{i}^{6}}_{i} \underbrace{1242.4}_{i} \underbrace{1.8.4.5}_{i} \underbrace{2135.88}_{i} \underbrace{(3/2,5/2^{+})}_{i} \underbrace{1098.21}_{i} \underbrace{1/2^{+}}_{i} \underbrace{E_{i}^{6}}_{i} E_{$ | <u>1)</u>                                                                                                                                                                                                                                                               |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| $\begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                         |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Comments                                                                                                                                                                                                                                                                |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Ιγ=0.16 5                                                                                                                                                                                                                                                               |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Iγ=0.22 11                                                                                                                                                                                                                                                              |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | $I_{\gamma=0.33}$ 11                                                                                                                                                                                                                                                    |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | $1\gamma = 0.22  II$                                                                                                                                                                                                                                                    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | $I\gamma = 0.22 II$<br>$I\gamma = 4.61 29$                                                                                                                                                                                                                              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | K)=0.001484 21; $\alpha$ (L)=0.000225 4; $\alpha$ (M)=5.21×10 <sup>-5</sup> 8<br>N)=1.326×10 <sup>-5</sup> 19; $\alpha$ (O)=2.70×10 <sup>-6</sup> 4;<br>$\alpha$ (P)=3.20×10 <sup>-7</sup> 5; $\alpha$ (IPF)=2.91×10 <sup>-5</sup> 4<br>fult: $\alpha$ (K)exp=0.0019 6. |
| 1264.0 <i>1</i> 1.7 2 2752.14 (3/2,5/2,7/2) 1488.14 5/2 <sup>+</sup> %                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | $I\gamma=0.93$ 11                                                                                                                                                                                                                                                       |
| $1277.1\ 2 \qquad 1.1\ 2 \qquad 1277.18 \qquad (7/2)^{-} \qquad 0 \qquad 9/2^{-} \qquad M1(+E2) \qquad <1.6 \qquad 0.0082\ 22 \qquad \%$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | $I_{\gamma}=0.60 \ II$                                                                                                                                                                                                                                                  |
| E <sub>2</sub><br>M                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | N)= $6.7 \times 10^{-5} 17$ ; $\alpha$ (O)= $1.4 \times 10^{-5} 4$ ; $\alpha$ (P)= $1.6 \times 10^{-6} 5$ ;<br>$\alpha$ (IPF)= $1.9 \times 10^{-5} 4$<br>$\gamma$ : Placement from 1982Lo14.<br>(ult., $\delta$ : From adopted gammas.                                  |
| x1307.2 <sup>#</sup> 4 0.5 4 %                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Ιγ=0.27 22                                                                                                                                                                                                                                                              |
| x1314.5 3 0.9 3 %                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Iγ=0.49 <i>16</i>                                                                                                                                                                                                                                                       |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | $I\gamma$ =2.91 23<br>K)=0.001306 19; $\alpha$ (L)=0.000198 3; $\alpha$ (M)=4.57×10 <sup>-5</sup> 7<br>N)=1.163×10 <sup>-5</sup> 17; $\alpha$ (O)=2.37×10 <sup>-6</sup> 4;<br>$\alpha$ (P)=2.81×10 <sup>-7</sup> 4; $\alpha$ (IPF)=6.95×10 <sup>-5</sup> 10             |
| 1352.9 <i>I</i> 2.5 <i>3</i> 1352.84 7/2 <sup>-</sup> 0 9/2 <sup>-</sup> M1 0.00890 %                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | $I_{\gamma=1.37} I_{6}$                                                                                                                                                                                                                                                 |
| α(<br>α(                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | K)=0.00728 11; $\alpha$ (L)=0.001205 17; $\alpha$ (M)=0.000282 4<br>N)=7.20×10 <sup>-5</sup> 10; $\alpha$ (O)=1.473×10 <sup>-5</sup> 21;<br>$\alpha$ (P)=1.764×10 <sup>-6</sup> 25; $\alpha$ (IPF)=4.48×10 <sup>-5</sup> 7                                              |
| <sup>x</sup> 14167 <sup>#</sup> 8 074                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | $I_{\nu=0.38}$ 22                                                                                                                                                                                                                                                       |
| x1419.5 <sup>#</sup> 8 0.3 2 %                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | $I_{\gamma} = 0.16 II$                                                                                                                                                                                                                                                  |
| x1466.0 <sup>#</sup> 5 0.7 3 %                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Ιγ=0.38 16                                                                                                                                                                                                                                                              |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Ιγ=0.60 17                                                                                                                                                                                                                                                              |
| $x^{1}490.3^{\#}4$ 0.8 4 %                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | $I_{\gamma}=0.44\ 22$                                                                                                                                                                                                                                                   |
| x1552.2 4 0.8 3 %                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | $I\gamma = 0.44 II$<br>$I\gamma = 0.44 I6$                                                                                                                                                                                                                              |
| x1568.5 4 1.0 3 %                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | $I\gamma=0.55$ 17                                                                                                                                                                                                                                                       |
| 1598.5 <sup>#</sup> 3 0.9 2 2689.45? (3/2 <sup>-</sup> ,5/2,7/2) 1090.98 7/2 <sup>-</sup> %                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Ιγ=0.49 11                                                                                                                                                                                                                                                              |
| x1601.7 <sup>#</sup> 5 0.4 1 %                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Ιγ=0.22 6                                                                                                                                                                                                                                                               |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Iγ=0.22 6<br>Iγ=0.49 11                                                                                                                                                                                                                                                 |

6

I

|                                    |                          |                        |                       |         |                      | $^{203}$ Po $\varepsilon$ decay           | 1972Al25 (continued) |          |
|------------------------------------|--------------------------|------------------------|-----------------------|---------|----------------------|-------------------------------------------|----------------------|----------|
|                                    |                          |                        |                       |         |                      | $\gamma$ <sup>(203</sup> B                | i) (continued)       |          |
|                                    |                          |                        |                       |         |                      | / <                                       |                      |          |
| $E_{\gamma}^{\dagger}$             | $I_{\gamma}^{\dagger a}$ | E <sub>i</sub> (level) | $\mathbf{J}_i^\pi$    | $E_f$   | $\mathbf{J}_f^{\pi}$ |                                           |                      | Comments |
| 1658.1 2                           | 0.9 2                    | 2566.72?               | $(3/2^{-}, 5/2, 7/2)$ | 908.72  | 7/2-                 | %Iγ=0.49 <i>11</i>                        |                      |          |
| <sup>x</sup> 1666.3 <sup>#</sup> 5 | 0.4 1                    |                        |                       |         |                      | %Iγ=0.22 6                                |                      |          |
| 1673.0 <i>3</i>                    | 0.9 2                    | 2566.72?               | $(3/2^{-}, 5/2, 7/2)$ | 893.54  | 5/2-                 | %Iγ=0.49 <i>11</i>                        |                      |          |
| $x^{1716.2}$                       | 0.6 2                    |                        |                       |         |                      | %Iγ=0.33 <i>11</i>                        |                      |          |
| <sup>x</sup> 1758.3 <sup>#</sup> 4 | 0.2 2                    |                        |                       |         |                      | %Iγ=0.11 <i>11</i>                        |                      |          |
| 1780.7 <i>I</i>                    | 1.2 2                    | 2689.45?               | $(3/2^{-}, 5/2, 7/2)$ | 908.72  | 7/2-                 | $\% l\gamma = 0.66 11$                    |                      |          |
| 1/93.92                            | 1.0 2                    | 2089.43?               | (3/2, 3/2, 7/2)       | 695.54  | 5/2                  | $\%1\gamma=0.33$ 11                       |                      |          |
| 1817 5 3                           | 0.4 <i>I</i><br>1 9 2    | 3130.52                | $(3/2, 5/2^+)$        | 1312.97 | $3/2^{+}$            | $\%1\gamma=0.22$ 0<br>$\%1\gamma=1.04$ 11 |                      |          |
| $x_{1830} 1^{\#} 7$                | 051                      | 0100.02                | (3/2,3/2)             | 1012.97 | 5/2                  | %Iy=0.27.6                                |                      |          |
| $x_{1909.8}^{\#} 4$                | 0.1 /                    |                        |                       |         |                      | $\%I\gamma = 0.05.5$                      |                      |          |
| $x_{1914,2}^{\#}$ 3                | 0.2.1                    |                        |                       |         |                      | $\%I\gamma = 0.11.5$                      |                      |          |
| x1930.8 <sup>#</sup> 5             | 1.6 4                    |                        |                       |         |                      | $\%I\gamma = 0.88 22$                     |                      |          |
| <sup>x</sup> 1936.2 <sup>#</sup> 6 | 0.3 1                    |                        |                       |         |                      | $\%$ I $\gamma$ =0.16.5                   |                      |          |
| $x_{1960.4}^{\#}$ 5                | 0.2 1                    |                        |                       |         |                      | $\%$ I $\gamma$ =0.11.5                   |                      |          |
| $x_{1970.7}^{\#} 4$                | 0.3 1                    |                        |                       |         |                      | $\%I\gamma = 0.16.5$                      |                      |          |
| <sup>x</sup> 1991.0 <sup>#</sup> 3 | 0.2 1                    |                        |                       |         |                      | $\%$ I $\gamma$ =0.11.5                   |                      |          |
| x2029.5 3                          | 1.0 2                    |                        |                       |         |                      | %Iγ=0.55 <i>11</i>                        |                      |          |
| 2032.5 3                           | 0.7 2                    | 3130.52                | $(3/2, 5/2^+)$        | 1098.21 | $1/2^{+}$            | %Iγ=0.38 <i>11</i>                        |                      |          |
| <sup>x</sup> 2086.8 <sup>#</sup> 3 | 0.4 2                    |                        |                       |         |                      | %Iγ=0.22 11                               |                      |          |
| <sup>x</sup> 2189.4 <sup>#</sup> 7 | 0.2 1                    |                        |                       |         |                      | %Iγ=0.11 5                                |                      |          |
| <sup>x</sup> 2197.7 <sup>#</sup> 3 | 0.4 1                    |                        |                       |         |                      | %Iγ=0.22 6                                |                      |          |
| 2236.9 2                           | 1.0 2                    | 3130.52                | $(3/2, 5/2^+)$        | 893.54  | 5/2-                 | %Iγ=0.55 <i>11</i>                        |                      |          |
| <sup>x</sup> 2373.7 <sup>#</sup> 3 | 0.4 2                    |                        |                       |         |                      | %Iγ=0.22 <i>11</i>                        |                      |          |
| <sup>x</sup> 2477.7 <sup>#</sup> 6 | 0.2 1                    |                        |                       |         |                      | %Iγ=0.11 5                                |                      |          |
| $x^{2529.5\#}4$                    | 0.3 1                    |                        |                       |         |                      | %Iγ=0.16 5                                |                      |          |
| x2665.6# 6                         | 0.1 1                    |                        |                       |         |                      | %Iγ=0.05 5                                |                      |          |
| $x^{2728.8^{\text{ff}}} 4$         | 0.2 1                    |                        |                       |         |                      | %Iγ=0.11 5                                |                      |          |
| $x^{2916.4^{\text{ff}}}_{\mu} 4$   | 0.4 1                    |                        |                       |         |                      | %Iγ=0.22 <i>6</i>                         |                      |          |
| <sup>x</sup> 2952.2 <sup>#</sup> 4 | 0.3 1                    |                        |                       |         |                      | %Iγ=0.16 5                                |                      |          |

<sup>†</sup> From 1972A125, unless otherwise stated.
<sup>‡</sup> From α(K)exp and K/Lexp in 1972A125 and 1969A110, unless otherwise stated.
<sup>#</sup> Weak transitions tentatively assigned to <sup>203</sup>Bi (1972A125).
<sup>@</sup> Reported only by 1970Jo26. The assignment to <sup>203</sup>Bi is tentative.

#### $^{203}$ Po $\varepsilon$ decay 1972Al25 (continued)

 $\gamma$ (<sup>203</sup>Bi) (continued)

- <sup>&</sup> Additional information 1. <sup>*a*</sup> For absolute intensity per 100 decays, multiply by 0.549 *10*. <sup>*b*</sup> Placement of transition in the level scheme is uncertain. <sup>*x*</sup>  $\gamma$  ray not placed in level scheme.



9

<sup>203</sup>Bi<sub>120</sub>-9

From ENSDF

 $^{203}_{83}\mathrm{Bi}_{120}\text{-}9$