203 Pt β^- decay **2013Mo20**

History							
Туре	Author	Citation	Literature Cutoff Date				
Full Evaluation	F. G. Kondev	NDS 177, 509, 2021	4-Jul-2021				

Parent: ²⁰³Pt: E=0; $J^{\pi}=(1/2^{-})$; $T_{1/2}=22$ s 4; $Q(\beta^{-})=3630$ SY; $\%\beta^{-}$ decay=100.0

 203 Pt-J^{π},T_{1/2}: From Adopted Levels for 203 Pt.

²⁰³Pt-Q(β⁻): 3630 200 (syst, 2021Wa16).

²⁰³Pt produced in cold fragmentation reactions with E=1 GeV/nucleon ²⁰⁸Pb beam impinging a 2.5 g/cm² thick Be target. The beam was provided by SIS-18 synchrotron at GSI facility. Residues of interest were separated using Fragment Separator. Measured E γ , I γ , $\gamma\gamma$ -coin, $\beta\gamma$ -coin, fragment- γ correlated event using RISING array of 15 cluster Ge detectors and nine DSSSD detectors. Other: 2011MoZP.

²⁰³Au Levels

E(level) [†]	$J^{\pi \ddagger}$
0.0	3/2+
39.0 9	$1/2^{+}$
385.0 20	3/2+
563.0 20	$(7/2^+)$
874? 5	$(3/2^+)$
976.8 16	$(1/2^+)$
982.6 15	$(1/2^+)$
1161? 4	$(1/2^+, 3/2^+)$
1274.0 25	$1/2^{+}$
1505.8 <i>13</i>	$(1/2^+, 3/2^+)$

[†] From a least-squares fit to $E\gamma$.

[‡] From Adopted Levels.

β^{-} radiations

E(decay)	E(level)	$I\beta^{-\dagger\ddagger}$	Comments
(2124 <i>SY</i>)	1505.8	≈8.6	
(2356 SY)	1274.0	≈3.7	
(2469 [#] SY)	1161?	≈2.3	
(2647 SY)	982.6	≈55	
(2653 SY)	976.8	≈3.4	
$(2756^{\#} SY)$	874?	<2.0	
(3067 <i>SY</i>)	563.0	≈2.4	$I\beta^-$: Cannot be fed directly from the $J^{\pi}=1/2^-$, ²⁰³ Pt parent. The excess β^- feeding is most likely due to the incompleteness of the decay scheme.
(3245 SY)	385.0	≈5.1	
(3591 <i>SY</i>)	39.0	≈ 8	
(3630 <i>SY</i>)	0.0	≈9	<i>Iβ</i> ⁻ : Based on log <i>ft</i> =6.51 for the same $1/2^{-} [\nu(p_{1/2}^{-1})]$ to $3/2^{+} [\pi(d_{3/2}^{-1})] \beta^{-}$ decay transition in ²⁰⁵ Hg.

[†] From intensity balance considerations.

[‡] Absolute intensity per 100 decays.

[#] Existence of this branch is questionable.

²⁰³Pt β^- decay **2013Mo20** (continued)

 $\gamma(^{203}\mathrm{Au})$

I γ normalization: From the decay scheme; NR=(100-%I_{\beta_0})/\Sigma I_{\gamma+ce}(to g.s.), with %I $_{\beta_0} \approx 9$. Since the decay scheme is incomplete, the value should be considered as approximate.

E_{γ}^{\dagger}	$I_{\gamma}^{\dagger \ddagger}$	E _i (level)	\mathbf{J}_i^{π}	\mathbf{E}_{f}	\mathbf{J}_{f}^{π}	Mult.	α [#]	Comments
39.0 9	5.4 8	39.0	1/2+	0.0	3/2+	[M1]	20.5 3	$\begin{array}{l} \alpha(\text{L})=15.7 \ 12; \ \alpha(\text{M})=3.7 \ 3\\ \alpha(\text{N})=0.91 \ 7; \ \alpha(\text{O})=0.167 \ 13; \\ \alpha(\text{P})=0.0113 \ 9\\ \text{I}_{\gamma}: \ \text{From I}(\gamma+\text{ce})=117 \ 17 \ \text{and} \\ \alpha(\text{tot})=20.5 \ 3 \ \text{in } 2013\text{Mo20}. \end{array}$
311 [@] 5	<6.6	874?	(3/2 ⁺)	563.0	(7/2 ⁺)	[E2]	0.092 5	$\alpha(K)=0.248 \ 12; \ \alpha(L)=0.0409 \ 20; \ \alpha(M)=0.0095 \ 5 \ \alpha(N)=0.00236 \ 12; \ \alpha(O)=0.000434 \ 21; \ \alpha(P)=2 \ 94 \times 10^{-5} \ 14$
x353 2	13.1 11							E _γ : Shows a 12 s time component, indicating that most likely this γ ray follows the decay of the $J^{\pi}=13/2^+$ isomer in ²⁰³ Pt. However, there is no direct evidence that this γ-ray is associated with the β ⁻ branch of the isomer, since such a decay would proceed via the $J^{\pi}=11/2^-$ isomer at 641 keV in ²⁰³ Au, which was not observed in 2013Mo20. The existence of a high-spin (J=11/2,13/2,15/2) state at 353 keV in ²⁰³ Au seems unphysical and most-likely the 353γ follows the IT decay of the $J^{\pi}=13/2^+$ isomer in ²⁰³ Pt or β ⁻ decay of the ²⁰³ Ir ground state
385 2	17.4 <i>14</i>	385.0	3/2+	0.0	3/2+	[M1,E2]	0.169 4	$\alpha(K)=0.139 \ 3; \ \alpha(L)=0.0229 \ 5; \ \alpha(M)=0.00529 \ 11 \ \alpha(N)=0.00132 \ 3; \ \alpha(O)=0.000243 \ 5; \ \alpha(P)=1 \ 65 \times 10^{-5} \ 4$
563 2	8.5 9	563.0	(7/2+)	0.0	3/2+	[E2]	0.0195 4	$\alpha(K) = 0.01460 \ 24; \ \alpha(L) = 0.00371 \ 7; \alpha(M) = 0.000899 \ 16 \alpha(N) = 0.000223 \ 4; \ \alpha(O) = 3.88 \times 10^{-5} \ 7; \alpha(P) = 1.62 \times 10^{-6} \ 3$
776 [@] 4	4.1 6	1161?	(1/2+,3/2+)	385.0	3/2+	[M1,E2]	0.0270 6	$\alpha(K)=0.0223 5; \alpha(L)=0.00358 7;$ $\alpha(M)=0.000827 16$ $\alpha(N)=0.000206 4; \alpha(O)=3.80\times10^{-5} 8;$ $\alpha(P)=2 60\times10^{-6} 5$
889.0 15	6.7 9	1274.0	1/2+	385.0	3/2+	[M1,E2]	0.0191	$\begin{array}{l} \alpha(\Gamma) = 2.60 \times 10^{-5} \\ \alpha(K) = 0.01579 \ 24; \ \alpha(L) = 0.00252 \ 4; \\ \alpha(M) = 0.000582 \ 9 \\ \alpha(N) = 0.0001449 \ 22; \ \alpha(O) = 2.67 \times 10^{-5} \\ 4; \ \alpha(P) = 1 \ 83 \times 10^{-6} \ 3 \end{array}$
943.6 12	100 7	982.6	(1/2 ⁺)	39.0	1/2+	[M1]	0.01638	$\alpha(K) = 0.01357 \ 20; \ \alpha(L) = 0.00216 \ 4; \ \alpha(M) = 0.0001243 \ 18; \ \alpha(O) = 2.29 \times 10^{-5}$
976.8 16	6.1 8	976.8	$(1/2^+)$	0.0	3/2+	[M1,E2]	0.01500 22	4; $\alpha(P)=1.5/5\times10^{-6}$ 23 $\alpha(K)=0.01243$ 19; $\alpha(L)=0.00198$ 3; $\alpha(M)=0.000457$ 7

Continued on next page (footnotes at end of table)

				203 Pt β^- de	cay 2013	Mo20 (con	tinued)
γ ⁽²⁰³ Au) (continued)							
E_{γ}^{\dagger}	$I_{\gamma}^{\dagger \ddagger}$	E _i (level)	\mathbf{J}_i^{π}	$\mathbf{E}_f \mathbf{J}_f^{\pi}$	Mult.	α #	Comments
1505.8 <i>13</i>	15.7 <i>17</i>	1505.8	(1/2+,3/2+)	0.0 3/2+	[M1,E2]	0.00514	$\begin{aligned} &\alpha(\mathbf{N}) = 0.0001137 \ 17; \ \alpha(\mathbf{O}) = 2.10 \times 10^{-5} \ 3; \\ &\alpha(\mathbf{P}) = 1.440 \times 10^{-6} \ 21 \\ &\alpha(\mathbf{K}) = 0.00418 \ 6; \ \alpha(\mathbf{L}) = 0.000658 \ 10; \\ &\alpha(\mathbf{M}) = 0.0001515 \ 22 \\ &\alpha(\mathbf{N}) = 3.77 \times 10^{-5} \ 6; \ \alpha(\mathbf{O}) = 6.96 \times 10^{-6} \ 10; \\ &\alpha(\mathbf{P}) = 4.82 \times 10^{-7} \ 7; \ \alpha(\mathbf{IPF}) = 0.0001059 \ 17 \end{aligned}$

[†] From 2013Mo20, unless otherwise stated.
[‡] For absolute intensity per 100 decays, multiply by ≈0.545.
[#] Total theoretical internal conversion coefficients, calculated using the BrIcc code (2008Ki07) with Frozen orbital approximation based on γ -ray energies, assigned multipolarities, and mixing ratios, unless otherwise specified.

^(a) Placement of transition in the level scheme is uncertain. ^x γ ray not placed in level scheme.

²⁰³Pt β^- decay 2013Mo20

Decay Scheme

²⁰³₇₉Au₁₂₄