¹⁹⁴Pt(¹⁴N, $5n\gamma$) **1983Dy02**

		History	
Туре	Author	Citation	Literature Cutoff Date
Full Evaluation	F. G. Kondev	NDS 177, 509, 2021	4-Jul-2021

Produced using ¹⁹⁴Pt(¹⁴N,5n γ) reaction; Beam: E(¹⁴N)=80-100 MeV. The optimum energy of 97 MeV was determined; Additional pulsed beam measurements with a beam repetition period of 2 μ s and a pulse width of about 10 ns (FWHM) was also carried out; Targets: enriched to >95% in ¹⁹⁴Pt, 7 mg/cm² thick; Detectors: two Ge(Li); Measured: excitation functions (singles) γ (t), $\gamma(\theta)$, $\gamma\gamma$ (coin), DCO; Deduced: level scheme, J^{π} , T_{1/2}.

²⁰³At Levels

E(level) [†]	J ^{πe}	$T_{1/2}f$	Comments		
0 [‡] 648.59 [#] 10 660.14 [#] 14 872.02 [@] 13 1225.29 ^{&} 14 1379.01 ^a 20 1633.36 ^a 20 1636.59 ^b 17 1695.61 20 1792.89 25 1942.03 23	9/2 ⁻ 13/2 ⁻ 11/2 ⁻ 13/2 ⁺ 17/2 ⁻ 15/2 ⁺ 17/2 ⁺ 21/2 ⁻ 17/2 ⁺ 19/2 ⁻ ,21/2 ⁻ 19/2 ⁺	7.4 min 2	J ^π ,T _{1/2} : From Adopted Levels.		
1942.03+x		16.6 ns 7	Additional information 1. E(level): The isomer is expected to be less than 100 keV above the 1942 keV $(J^{\pi}=19/2^+)$ level, since no Ey was observed in coincidence with the 660, 872, 212, 507, 254, 761, 317, 824, 246 and 309 γ .		
1964.6 ^c 3 1964.6+y ^d	23/2 ⁽⁻⁾ (25/2 ⁺)	11.8 ns <i>14</i>	Additional information 2. E(level): The isomer is expected to be less than 100 keV above the 1965 keV $(J^{\pi}=23/2^{(-)})$ level, since no E γ was observed in coincidence with the 649, 577, 411 and 328 γ .		
2071.99 25 2079.39 25 2227.93+x 20 2330.40+y 20 2486.33+x 20 2502.9 4 2701.1+x 3			J ⁻ : From systematics arguments (see 1983Dy02).		
[†] From a lease [‡] Configuratio	t-squares fit to 1 on= $\pi(h_{9/2}^{+1})$.	Εγ.			
[@] Configuratio	$\sin = \pi (h_{9/2}^{+1}) \otimes 2^+$.				
& Configuratio	$n = \pi(h_{13/2}^{+1}) \otimes 4^+$				
^{<i>a</i>} Configuratio	$n = \pi(i_{12/2}^{+1}) \otimes 2^+.$				
^b Configuration	$n = \pi(h_{0/2}^{+3}).$				
^c Configuratio	$n = \pi (h_{0/2}^{+2}, f_{7/2})^{+1}$	¹).			
^d Configuratio	$n = \pi(h_{9/2}^{+1}) \otimes \nu(i_1)$	$f_{3/2}^{-1}, f_{5/2}^{-1}$) The as	ssignment is tentative.		
^e Based on deduced transition multipolarities, multiple decay branches and systematics arguments in 1983Dy02.					

^{*f*} From γ (t) in 1983Dy02, unless otherwise stated. The existence of two additional isomers, one with T_{1/2}=13.9 ns 14, above the

Continued on next page (footnotes at end of table)

¹⁹⁴Pt(¹⁴N,5nγ) **1983Dy02** (continued)

²⁰³At Levels (continued)

 $\gamma(^{203}{\rm At})$

2072-keV level that is depopulated by 847γ , and another with $T_{1/2}>1.4 \mu$ s that feeds the yrast cascade, have been reported by 1983Dy02.

E_{γ}^{\dagger}	I_{γ}^{\dagger}	E _i (level)	\mathbf{J}_i^{π}	E_{f}	J_f^π	Mult. [#]	Comments
≤100		1942.03+x		1942.03	19/2+		E_{γ} : An upper limit based on the non-observation of low energy E_{γ} in coincidence with the 660, 872, 212, 507, 254, 761, 317, 824, 246 and 309 γ .
≤100		1964.6+y	(25/2 ⁺)	1964.6	23/2 ⁽⁻⁾		E_{γ} : An upper limit based on the non-observation of low energy E_{γ} in coincidence with the 649, 577, 411 and 328 γ .
211.9 <i>I</i>	67 4	872.02	13/2+	660.14	11/2-	E1	 Mult.: A₂=-0.098 <i>19</i>, A₄=0.02 2; α from intensity balance considerations. I_γ: Delayed intensity, Iγ(delayed)=40 3. Delayed component of 24 ns 1.
214.8 2	6 [‡] 2	2701.1+x		2486.33+x			I _{γ} : Delayed intensity, I γ (delayed)=7 2. Delayed component of 16 ns 2.
223.5 2	92	872.02	$13/2^{+}$	648.59	13/2-	(E1)	Mult.: $A_2 = -0.03 5$, $A_4 = 0.14 8$.
246.3 2	13 [‡] 1	1942.03	19/2+	1695.61	17/2+		I _{γ} : Delayed intensity, I γ (delayed)=11 2. Delayed component of 25 ns 2.
254.4 2	17 4	1633.36	17/2+	1379.01	15/2+	M1(+E2)	Mult.: $A_2=-0.3 I$, $A_4=0.0 I$. I _{γ} : Delayed intensity, I γ (delayed)=12 I. Delayed component of 30 ns 3.
285.9 2	17 [‡] 5	2227.93+x		1942.03+x			
308.8 2	39 <i>3</i>	1942.03	19/2+	1633.36	17/2+	M1(+E2)	Mult.: $A_2 = -0.26$ 3, $A_4 = 0.01$ 5. I _{γ} : Delayed intensity, I γ (delayed)=27 2. Delayed component of 26 ns 1.
316.5 <i>3</i>	7 [‡] 2	1695.61	17/2+	1379.01	15/2+		I _{γ} : Delayed intensity, I γ (delayed)=6 2. Delayed component of 23 ns 4.
328.0 2	21 [‡] 1	1964.6	$23/2^{(-)}$	1636.59	21/2-	M1(+E2)	Mult.: DCO(gate on 411γ , 577 γ and 649γ)=1.48 <i>14</i> .
365.8 2	11 [‡] 1	2330.40+y		1964.6+y	$(25/2^+)$		
411.3 <i>1</i>	43 [‡] 3	1636.59	21/2-	1225.29	17/2-	E2	Mult.: DCO(gate on 577γ)=0.95 9; DCO(gate on 649γ)=1.02 11. I _{γ} : Delayed intensity, I γ (delayed)=19 5. Delayed component of 16 ns 2.
507.0 2 544.3 2	47 2 15 2	1379.01 2486.33+x	15/2+	872.02 1942.03+x	13/2+	M1(+E2)	Mult.: $A_2 = -0.46 \ 3, \ A_4 = -0.03 \ 3.$ $A_2 = -0.58 \ 5. \ A_4 = -0.12 \ 7.$
01110 2	10 2	2100000111		17 12100 111			I_{γ} : Delayed intensity, I_{γ} (delayed)=11 3. Delayed component of 13 ns 2.
567.6 2	14 <i>I</i>	1792.89	19/2-,21/2-	1225.29	17/2-	E2(+M1)	Mult.: $A_2=0.31$ 7, $A_4=0.0$ 1. I_{γ} : No delayed component.
576.7 1	74 <i>4</i>	1225.29	17/2-	648.59	13/2-	E2	Mult.: $A_2=0.183$ <i>16</i> , $A_4=-0.01$ <i>2</i> . I _{γ} : Delayed intensity, I γ (delayed)=25 <i>4</i> . Delayed component of 18 ns <i>2</i> .
648.6 <i>1</i>	100 4	648.59	13/2-	0	9/2-	E2	Mult.: $A_2=0.211$ 14, $A_4=-0.030$ 17. I _{γ} : Delayed intensity, I γ (delayed)=34 3. Delayed component of 19 ns 1.
660.2 2	75 3	660.14	11/2-	0	9/2-	M1+E2	Mult.: $A_2 = -0.41$ 2, $A_4 = 0.05$ 2. I _{γ} : Delayed intensity, I γ (delayed)=44 3. Delayed component of 23 ns 1.
710.0 2	72	2502.9		1792.89	19/2-,21/2-		· · · · · · · · · · · · · · · · · · ·

Continued on next page (footnotes at end of table)

					¹⁹⁴ Pt (¹⁴	⁴ N,5n γ)	1983Dy02 (continued)
						γ (²⁰³ A	t) (continued)
E_{γ}^{\dagger}	I_{γ}^{\dagger}	E _i (level)	\mathbf{J}_i^{π}	E_f	J_f^π	Mult. [#]	Comments
761.4 2	36 [‡] 3	1633.36	17/2+	872.02	13/2+	E2	Mult.: A ₂ =0.18 4, A ₄ =0.00 5. I _{γ} : Delayed intensity, I γ (delayed)=26 2. Delayed component of 24 ns 1.
823.5 2	19 <i>1</i>	1695.61	$17/2^{+}$	872.02	$13/2^{+}$	E2	Mult.: $A_2=0.21$ 7, $A_4=-0.17$ 13.
846.7 2	10 2	2071.99		1225.29	17/2-		I _{γ} : Delayed intensity, I γ (delayed)=7 2. Delayed component of 20 ns 3.
854.1 2	71	2079.39		1225.29	$17/2^{-}$		
871.9 2	28 2	872.02	13/2+	0	9/2-	(M2)	Mult.: $A_2=0.16$ 5, $A_4=0.15$ 7. I _{γ} : Delayed intensity, I γ (delayed)=18 3. Delayed component of 23 ns 2.

[†] From 1983Dy02.
[‡] Intensity extracted from a coincidence projection in 1983Dy02.
[#] From γ(θ), DCO and total electron conversion coefficients (from intensity balances) in 1983Dy02.

3

 $^{203}_{85}{\rm At}_{118}$