²⁰²Pb ε decay (52.5×10³ y) 1954Hu61,1981Na15

History

Type Author Citation Literature Cutoff Date
Full Evaluation S. Zhu and F. G. Kondev NDS 109, 699 (2008)

1-May-2007

Parent: 202 Pb: E=0; J $^{\pi}$ =0+; T $_{1/2}$ =52.5×10 3 y 28; Q(ε)=50 15; % ε decay=100.0

1954Hu61: 202 Pb sample was produced using the 203 Tl(d,3n) reaction. E(d)=21 MeV. Pb chemically separated, 202 Pb separated by mass spectrometer. Measured (202 Hg L x ray)/(202 Tl L x ray)=1.6, (Tl K x ray)/(Hg K x ray)<0.005. $T_{1/2}(^{202}$ Pb) $T_{1/2}(^{202}$ Pb)=3×10⁵ y estimated by the authors.

1981Na15: 202 Pb sample was produced by nat Tl(p,xn). E(p)=52 MeV. Pb chemically separated, 202 Pb separated by mass spectrometer. $T_{1/2}(^{202}$ Pb)=52.5×10³ y 28 was obtained from measuring the 202 Pb activity of sample with known number of 202 Pb atoms.

²⁰²Tl Levels

$$\frac{\text{E(level)}^{\dagger}}{0} \quad \frac{\text{J}^{\pi \dagger}}{2^{-}} \quad \frac{\text{T}_{1/2}^{\dagger}}{12.31 \text{ d } 8}$$

† From Adopted Levels.

 ε radiations

E(decay) E(level)
$$1\varepsilon^{\dagger}$$
 Log ft Comments

(50.15) 0 100 9.2^{1u} 4 ε L=0.60.7: ε M+=0.40.7

[†] Absolute intensity per 100 decays.