²⁰²Pb ε decay (5.25×10⁴ y) 1954Hu61,1981Na15

Type Author Citation Literature Cutoff Date

Full Evaluation F. G. Kondev NDS 196,342 (2024) 1-Sep-2023

Parent: 202 Pb: E=0.0; J $^{\pi}$ =0+; T_{1/2}=5.25×10⁴ y 28; Q(ε)=40 4; % ε decay=100

1954Hu61: 202 Pb sample was produced using the 203 Tl(d,3n) reaction. E(d)=21 MeV. Pb chemically separated, 202 Pb separated by mass spectrometer. Measured (202 Hg L x ray)/(202 Tl L x ray)=1.6, (Tl K x ray)/(Hg K x ray)<0.005. $T_{1/2}(^{202}$ Pb)=3×10⁵ y was estimated by the authors.

1981Na15: ²⁰²Pb sample was produced by ^{nat}Tl(p,xn), E(p)=52 MeV and following chemical separation. An ionization type mass spectrometer was used to determine the ²⁰²Pb atoms, while a Ge(Li) detector was used to measure the ²⁰²Pb disintegration rate. Deduced: ²⁰²Pb half-life.

²⁰²Tl Levels

 $\frac{\text{E(level)}^{\dagger}}{0.0} \quad \frac{\text{J}^{\pi \dagger}}{2^{-}} \quad \frac{\text{T}_{1/2}^{\dagger}}{12.4706 \text{ d } 55}$

 ε radiations

E(decay) E(level) $I\epsilon^{\dagger}$ Log ft Comments

[†] From Adopted Levels.

[†] Absolute intensity per 100 decays.