²⁰²Pb ε decay (3.54 h) 1957Mc40,1972Gu06

		History	
Туре	Author	Literature Cutoff Date	
Full Evaluation	F. G. Kondev	NDS 196,342 (2024)	1-Sep-2023

Parent: ²⁰²Pb: E=2169.83 8; $J^{\pi}=9^{-}$; $T_{1/2}=3.54$ h 2; $Q(\varepsilon)=40$ 4; % ε decay=9.7 4

²⁰²Tl Levels

E(level) ^{†‡}	$J^{\pi \ddagger}$	T _{1/2} ‡
0.0	2-	12.4706 d 55
490.47 7	4-	
950.19 10	7+	591 µs 3
1098.94 14	6+	
1340.13 12	8+	
1552.09 12	9+	
1675.68 16	$8^+, 9^+$	

[†] From a least-squares fit to $E\gamma$. [‡] From Adopted Levels.

ε radiations

E(decay)	E(level)	$\mathrm{I}\varepsilon^{\dagger}$	Log ft	Comments
(534 4)	1675.68	0.29 7	7.49 11	εK=0.7653 5; εL=0.1757 4; εM+=0.05902 13
(658 4)	1552.09	2.2 4	6.82 9	εK=0.7762 3; εL=0.16790 20; εM+=0.05594 8
(870 4)	1340.13	6.7 9	6.60 7	εK=0.7868 2; εL=0.1603 1; εM+=0.05293 5
(1260 4)	950.19	0.9 9	8.6 ¹ <i>u</i> 5	εK=0.7733 2; εL=0.1698 2; εM+=0.05684 5

[†] For absolute intensity per 100 decays, multiply by 0.98.

$\gamma(^{202}\text{Tl})$

Iv normalization: From I(γ +ce)(490.47 γ)=100% and % ϵ =9.7 4.

E_{γ}^{\dagger}	I_{γ}^{\dagger} &	E_i (level)	\mathbf{J}_i^{π}	$E_f = J_f^{\pi}$	Mult. [‡]	$\delta^{\#}$	α [@]	Comments
148.55 15	0.45 15	1098.94	6+	950.19 7+	M1(+E2)	≤0.3	2.71 8	%Iγ=0.230 16 α(K)=2.19 9; α(L)=0.399 12; α(M)=0.094 4 α(N)=0.0237 9; α(O)=0.00457 14; α(P)=0.000414 9
211.92 7	1.5 3	1552.09	9+	1340.13 8+	M1		1.023 14	Mult.: K/L=6.1 <i>12</i> (1957Mc40); α (K)exp=3.0 <i>12</i> . %I γ =0.77 <i>5</i> α (K)=0.838 <i>12</i> ; α (L)=0.1423 <i>20</i> ; α (M)=0.0332 <i>5</i> α (N)=0.00839 <i>12</i> ; α (O)=0.001630 <i>23</i> ; α (P)=0.0001540 <i>22</i>
241.1 <i>1</i>	1.7 3	1340.13	8+	1098.94 6+	E2		0.2186 <i>31</i>	Mult.: α (L1)exp=0.14 (1972Gu06). %I γ =0.87 6 α (K)=0.1081 15; α (L)=0.0828 12; α (M)=0.02135 30 α (N)=0.00535 8; α (O)=0.000943 13; α (P)=4.32 \times 10 ⁻⁵ 6

Continued on next page (footnotes at end of table)

 ${}^{202}_{81}\text{Tl}_{121}$ -2

$\frac{202 \text{Pb } \varepsilon \text{ decay } (3.54 \text{ h}) \qquad 1957 \text{Mc40}, 1972 \text{Gu06 (continued})}{\gamma(^{202} \text{Tl}) \text{ (continued)}}$								
335.55 10	0.45 10	1675.68	8+,9+	1340.13 8+	M1(+E2)	≤0.7	0.255 35	I _γ : Doublet with 240.3γ in ²⁰² Pb IT decay; I _γ (241.1γ) deduced from I _γ (240γ+241γ)=2.2 <i>3</i> (1972Gu06) and I _γ (240.3γ)=0.51 <i>4</i> from ²⁰² Pb IT decay. Mult.: K/L=1.3 2 and L12/L3=2.5 <i>3</i> (1957Mc40). %I _γ =0.230 <i>16</i>
								$\alpha(K)=0.206 \ 31; \ \alpha(L)=0.0372 \ 28; \\ \alpha(M)=0.0087 \ 6 \\ \alpha(N)=0.00221 \ 15; \ \alpha(O)=0.000425 \\ 32; \ \alpha(P)=3.9\times10^{-5} \ 5 \\ Mult.: \ From \ \alpha(K)exp=0.23 \ 6; \ K/L \\ \approx 5 \ (1957Mc40).$
389.94 7	12.4 10	1340.13	8+	950.19 7+	M1(+E2)	≤0.4	0.1832 99	%I γ =6.3 4 α (K)=0.150 9; α (L)=0.0256 10; α (M)=0.00600 21 α (N)=0.00151 5; α (O)=0.000293 11; α (P)=2.74×10 ⁻⁵ 14 Mult.: α (K)exp=0.18 3; K/L=6 3 (1957Mc40)
459.72 7	17.3 10	950.19	7+	490.47 4 ⁻	E3		0.1212 <i>17</i>	%I γ =8.9 6 α (K)=0.0614 9; α (L)=0.0447 6; α (M)=0.01165 16 α (N)=0.00294 4; α (O)=0.000527 7; α (P)=2.99×10 ⁻⁵ 4 Mult.: L12/L3=5.1 5 and K/L<1.7 (1957Mc40); α (L)exp=0.041 7; K/L=1.51 15 (1955Be12).
490.47 7	18.4 10	490.47	4-	0.0 2-	E2		0.0295 4	%Iy=9.4 6 $\alpha(K)=0.02096 29; \alpha(L)=0.00643 9; \alpha(M)=0.001591 22$ $\alpha(N)=0.000400 6; \alpha(O)=7.33\times10^{-5}$ $10; \alpha(P)=4.91\times10^{-6} 7$ Mult.: $\alpha(L)exp=0.0072 12;$ L12/L3=8 2 (1957Mc40).
601.95 8	1.2 1	1552.09	9+	950.19 7+	E2		0.01825 26	%Iγ=0.61 4 α (K)=0.01364 19; α (L)=0.00350 5; α (M)=0.000854 12 α (N)=0.0002148 30; α (O)=3.99×10 ⁻⁵ 6; α (P)=2.92×10 ⁻⁶ 4 Mult.: α (K)exp=0.016 (1972Gu06).

[†] From 1972Gu06, unless otherwise stated. I γ relative to I γ (787 γ)=100 in ²⁰²Pb IT decay.

[±] From $\alpha(K)\exp,\alpha(L)\exp$ determined from Ice(γ)/Ice(787 γ) in 1957Mc40, $\alpha(K)\exp(787\gamma)=0.078$ 8 (²⁰²Pb IT decay) and $I\gamma/I\gamma(787\gamma)$ from 1972Gu06, and sub-shell ratios, unless otherwise stated.

[#] From $\alpha(K)$ exp, $\alpha(L)$ exp and K/L and the briccmixing program.

^(a) Additional information 1.
^(b) For absolute intensity per 100 decays, multiply by 0.51 4.

²⁰²Pb ε decay (3.54 h) 1957Mc40,1972Gu06

Decay Scheme

