²⁰⁶Ra α decay 1996Le09,1987He10,1967Va22

	History					
Туре	Author	Citation	Literature Cutoff Date			
Full Evaluation	F. G. Kondev	NDS 196,342 (2024)	1-Sep-2023			

Parent: ²⁰⁶Ra: E=0.0; $J^{\pi}=0^+$; $T_{1/2}=0.238$ s 18; $Q(\alpha)=7415$ 4; $\%\alpha$ decay ≈ 100

²⁰⁶Ra-T_{1/2}: Weighted average of 0.24 s 2 (1987He10), 0.21 s 50 (1996Le09) and 0.260 s 55 (2021Ni08).

1996Le09: ²⁰⁶Ra was produced in ¹⁷⁵Lu(³⁵Cl,4n) at 157 MeV and 166 MeV. The ¹⁷⁵Lu target has a thickness of 320 μ g/cm².

At 157 MeV, the cross section is the highest, 1.7 μ b. ²⁰⁶Ra was also produced in ¹⁷¹Yb(⁴⁰Ar,5n) at 204 MeV with 1.7 μ b cross section. The residues of ²⁰⁶Ra were separated by the gas-filled recoil separator (RITU) and identified on the basis of spatial and time correlations between the parent (²⁰⁶Ra) and the daughter (²⁰²Rn).

1987He10: ²⁰⁶Ra was produced in the reactions ¹⁷¹Yb(⁴⁰Ar,5n), ¹⁵⁹Tb(⁵¹V,4n) and ¹⁵⁴Sm(⁵⁸Fe,6n) with thin targets (200-850 μ g/cm²). The residues were separated by the velocity filter SHIP, then passed two large-area time-of-flight detectors and were finally implanted into an array of seven position-sensitive surface-barrier detectors, where α decay was registered. The ²⁰⁶Ra were identified by the spatial and time correlations between the parent (²⁰⁶Ra) and the daughter (²⁰²Rn).

1967Va22: ²⁰⁶Ra was produced via ¹⁹⁷Au(¹⁹F,10n) and ²⁰⁶Pb(¹²C,¹²N). The mass-number assignment of ²⁰⁶Ra was made on the basis of excitation functions. Si(Au) surface-barrier detectors were used in the measurements. Measured $E\alpha$, $T_{1/2}(\alpha)$.

²⁰²Rn Levels

E(level) [†]	$J^{\pi \dagger}$	T _{1/2} †
0.0	0^{+}	9.7 s 2

[†] From Adopted Levels.

 α radiations

Εα	E(level)	Iα‡	HF^{\dagger}	Comments	
7269 4	0.0	100	≈1	Eα: Weighted average of 7268 keV 10 (1996Le09,1995Le15), 7270 keV 10 (1987He10), 7270 keV 5 (1967Va22), 7262 keV 15 (1995Uu01) and 7263 keV 20 (1995Le41). Other: 7294 keV 23 (2021Ni08).	

[†] $r_0(^{202}Rn)=1.529$ 4 deduced with HF(7269 α)=1.

[‡] For absolute intensity per 100 decays, multiply by \approx 1.00.