²⁰²Pt IT decay **2005Ca02** History Type Author Citation Literature Cutoff Date Full Evaluation S. Zhu and F. G. Kondev NDS 109, 699 (2008) 1-May-2007 Parent: 202 Pt: E=1788.5 4; J^{π} =(7⁻); $T_{1/2}$ =0.28 ms +42-19; %IT decay=100.0 2005Ca02: Projectile fragmentation of 208 Pb beam at 1 GeV on 1.6 g/cm² thick 9 Be target. Fragment Recoil Separator (FRS) was used to identify 202 Pt residues. Measured: E γ , I γ , and $\gamma\gamma$, $\gamma\gamma$ (t); Detectors: four "Clover" type Ge detectors (providing 16 independent Ge crystals). The experimental setup also included two multi-wire proportional counters for position measurements; two scintillation detectors, providing time-of-flight and position information; and a further two scintillators and an ionization chamber (MUSIC) for energy loss measurements. For each Ge crystal, the energy and time of the first γ -ray event was recorded after the arrival of a heavy ion, up to a maximum time of 75 μ s. ## ²⁰²Pt Levels | E(level) [†] | $J^{\pi \ddagger}$ | T _{1/2} | Comments | | |--|--|------------------|---|--| | 0.0
534.90 20
1253.6 3
1788.5 4 | 0 ⁺ (2 ⁺) (4 ⁺) (7 ⁻) | 0.28 ms +42-19 | %IT≈100 $T_{1/2}$: The upper limit of this isomer's half-life corresponds to an isomeric ratio of 35%. If the isomeric ratio is taken to be 100%, then the upper-limit of this isomer's half-life increases to 1.8 ms. Possible Configuration= $((\pi h_{11/2})^{-1}(\pi d_{3/2})^{-1})$. | | [†] From a least-square fit to E γ . ## γ (²⁰²Pt) | E_{γ} | I_{γ}^{\ddagger} | $E_i(level)$ | J_i^π | \mathbf{E}_f J | f | |----------------------|-------------------------|--------------|--------------------|------------------|----| | | 180 [#] 24 | 534.90 | (2 ⁺) | 0.0 0+ | | | 534.9 [†] 2 | 180 <mark>#</mark> 24 | 1788.5 | (7^{-}) | 1253.6 (4 | +) | | 718.7.2 | 100 | 1253.6 | (4^{+}) | 534.90 (2 | +) | $[\]dagger$ 534.9 γ was suggested as a doublet by the authors, based on the relatively large width and intensity. [‡] From 2005Ca02, based on the systematics of the even-even Pt isotopes. [‡] Relative γ -ray intensity for transitions observed within the 75 μ s time window. [#] Doublets, undivided intensity is given. ## ²⁰²Pt IT decay **2005**Ca02