¹⁹⁶**Pt**(¹²**C,6n** γ) 1990Fa03

History								
Туре	Author	Citation	Literature Cutoff Date					
Full Evaluation	F. G. Kondev	NDS 196,342 (2024)	1-Sep-2023					

1990Fa03: $E(^{12}C)=100$ MeV, pulsed beam; detectors: HPGe and Ge(Li); measured: $\gamma\gamma(t)$, $\gamma(\theta)$, $\gamma(t)$, $E\gamma$ and $I\gamma$.

²⁰²Po Levels

E(level) [†]	$J^{\pi \ddagger}$	T _{1/2} ‡	Comments
0	0^{+}		
677.2 5	2+		
1248.7 7	4+		
1691.7 9	6+		
1691.7+x 5	8+	85 ns 15	Additional information 1.
2218.1+x 4	9-	<11 ns	
2604.2+x 4	11-	>200 ns	$T_{1/2}$: Because 912.5 γ (t) and 386.0 γ (t) are close to the repetition time of beam bursts, value can not be determined accurately.
2897.5+x 5	11-		·
3040.6+x 5	12^{+}	19 ns 4	
3435.3+x 7	13-		
3573.6+x 8	15^{-}	11 ns <i>3</i>	
3616.0+x 7	14^{+}		
4071.2+x 8	16^{+}		
4609.2+x 10	(18^{+})		
4612.7+x 10	18^{+}		
4738.8+x 10	18^{+}		
4822.9+x 11	(20^{+})		
4923.5+x 11	(19^{+})		
5188.7+x 12	(22^{+})		
5209.6+x 11	(20^{+})		
5293.3+x <i>12</i> 5528.9+x <i>12</i>	(21 ⁺)		

[†] From a least-square fit to $E\gamma$ by assuming $\Delta E\gamma$ =0.5 keV. [‡] From 1990Fa03.

$\gamma(^{202}\text{Po})$

E_{γ}^{\dagger}	I_{γ}^{\dagger}	E _i (level)	\mathbf{J}_i^{π}	E_f	J_f^{π}	Mult. [‡]	α #	Comments
138.3	14	3573.6+x	15-	3435.3+x	13-	[E2]	1.882 26	$ \begin{array}{l} \alpha(\text{K}) = 0.343 \ 5; \ \alpha(\text{L}) = 1.141 \ 16; \ \alpha(\text{M}) = 0.304 \ 4 \\ \alpha(\text{N}) = 0.0779 \ 11; \ \alpha(\text{O}) = 0.01488 \ 21; \ \alpha(\text{P}) = 0.001356 \\ 19 \end{array} $
143.1	23	3040.6+x	12+	2897.5+x	11-	[E1]	0.1868 26	α (K)=0.1492 21; α (L)=0.0287 4; α (M)=0.00679 10 α (N)=0.001725 24; α (O)=0.000346 5; α (P)=3.96×10 ⁻⁵ 6 Mult: Δz (Δz)0
180.7	4	3616.0+x	14+	3435.3+x	13-	[E1]	0.1051 15	$\begin{array}{l} \alpha(\mathrm{K}) = 0.0846 \ 12; \ \alpha(\mathrm{L}) = 0.01564 \ 22; \ \alpha(\mathrm{M}) = 0.00369 \ 5\\ \alpha(\mathrm{N}) = 0.000940 \ 13; \ \alpha(\mathrm{O}) = 0.0001899 \ 27; \\ \alpha(\mathrm{P}) = 2.214 \times 10^{-5} \ 31 \end{array}$
213.7	10	4822.9+x	(20 ⁺)	4609.2+x	(18 ⁺)	(E2)	0.375 5	$\alpha(K)=0.1441 \ 20; \ \alpha(L)=0.1713 \ 24; \ \alpha(M)=0.0452 \ 6 \\ \alpha(N)=0.01158 \ 16; \ \alpha(O)=0.002233 \ 31; \\ \alpha(P)=0.0002122 \ 30$
310.8	2	4923.5+x	(19 ⁺)	4612.7+x	18+	(M1)	0.459 6	Mult.: $A_2/A_0>0$. $\alpha(K)=0.373 5; \alpha(L)=0.0652 9; \alpha(M)=0.01536 22$ $\alpha(N)=0.00395 6; \alpha(O)=0.000828 12;$

Continued on next page (footnotes at end of table)

¹⁹⁶Pt(¹²C,6nγ) **1990Fa03** (continued)

γ ⁽²⁰²Po) (continued)</sup>

E_{γ}^{\dagger}	I_{γ}^{\dagger}	E _i (level)	\mathbf{J}_i^{π}	\mathbf{E}_{f}	\mathbf{J}_{f}^{π}	Mult. [‡]	α #	Comments
365.8	5	5188.7+x	(22+)	4822.9+x	(20+)	(E2)	0.07141 99	$\alpha(P)=0.0001070 \ 15$ Mult.: A ₂ /A ₀ <0. $\alpha(K)=0.0431 \ 6; \ \alpha(L)=0.02120 \ 30; \ \alpha(M)=0.00544 \ 8$ $\alpha(N)=0.001398 \ 20; \ \alpha(O)=0.000275 \ 4; \ \alpha(P)=2 \ 84 \times 10^{-5} \ 4$
386.0	13	2604.2+x	11-	2218.1+x	9-	E2	0.0617 9	$\begin{array}{l} \alpha(\mathbf{r}) = 2.5 \times 10^{-10} \\ \text{Mult: } A_2/A_0 > 0, \\ \alpha(\mathbf{K}) = 0.0383 5; \ \alpha(\mathbf{L}) = 0.01755 25; \ \alpha(\mathbf{M}) = 0.00449 6 \\ \alpha(\mathbf{N}) = 0.001153 16; \ \alpha(\mathbf{O}) = 0.0002273 32; \\ \alpha(\mathbf{M}) = 2.276 \times 10^{-5} 32 \end{array}$
436.4	21	3040.6+x	12+	2604.2+x	11-	E1	0.01366 <i>19</i>	$\begin{aligned} &\alpha(\mathbf{F}) = 2.376 \times 10^{-5} 55 \\ &\text{Mult.: } A_2 = 0.37 5, A_4 = -0.17 7. \\ &\alpha(\mathbf{K}) = 0.01122 16; \ \alpha(\mathbf{L}) = 0.001868 26; \\ &\alpha(\mathbf{M}) = 0.000437 6 \\ &\alpha(\mathbf{N}) = 0.0001118 16; \ \alpha(\mathbf{O}) = 2.302 \times 10^{-5} 32; \end{aligned}$
443.0	89	1691.7	6+	1248.7	4+	E2	0.0432 6	$\alpha(P)=2.84\times10^{-6} 4$ Mult.: A ₂ =-0.04 4, A ₄ =0.12 5. $\alpha(K)=0.0285$ 4; $\alpha(L)=0.01102$ 15; $\alpha(M)=0.00279$ 4 $\alpha(N)=0.000717$ 10; $\alpha(O)=0.0001423$ 20; $\alpha(P)=1.527\times10^{-5}$ 21
455.2	26	4071.2+x	16+	3616.0+x	14+	E2	0.0404 6	Mult.: A ₂ =0.14 <i>I</i> , A ₄ =0.03 <i>3</i> . α (K)=0.0269 <i>4</i> ; α (L)=0.01008 <i>14</i> ; α (M)=0.00255 <i>4</i> α (N)=0.000655 <i>9</i> ; α (O)=0.0001301 <i>18</i> ; α (P)=1 403×10 ⁻⁵ 20
470.4	3	5293.3+x	(21+)	4822.9+x	(20+)	(M1)	0.1499 <i>21</i>	Mult.: $A_2=0.42$ 3, $A_4=-0.06$ 6. $\alpha(K)=0.1222$ 17; $\alpha(L)=0.02112$ 30; $\alpha(M)=0.00497$ 7
526.4	44	2218.1+x	9-	1691.7+x	8+	E1	0.00924 <i>13</i>	$\begin{aligned} &\alpha(N)=0.001279\ 18;\ \alpha(O)=0.000268\ 4;\\ &\alpha(P)=3.46\times10^{-5}\ 5\\ &\text{Mult.:}\ A_2=-0.33\ 23,\ A_4=0.19\ 30.\\ &\alpha(K)=0.00761\ 11;\ \alpha(L)=0.001244\ 17;\\ &\alpha(M)=0.000291\ 4\\ &\alpha(N)=7.44\times10^{-5}\ 10;\ \alpha(O)=1.536\times10^{-5}\ 22; \end{aligned}$
537.7	17	3435.3+x	13-	2897.5+x	11-	E2	0.0271 4	α (P)=1.913×10 ⁻⁶ 27 Mult.: A ₂ =-0.09 2, A ₄ =0.08 4. α (K)=0.01910 27; α (L)=0.00599 8; α (M)=0.001497 21 α (N)=0.000385 5; α (O)=7.70×10 ⁻⁵ 11;
538.0	11	4609.2+x	(18 ⁺)	4071.2+x	16+	(E2)	0.0270 4	α (P)=8.57×10 ⁻⁶ <i>12</i> Mult.: A ₂ =0.38 <i>3</i> , A ₄ =-0.01 <i>5</i> . Doublet with 538.0y. α (K)=0.01908 27; α (L)=0.00598 <i>8</i> ; α (M)=0.001495 2 <i>1</i> α (N)=0.000384 <i>5</i> ; α (O)=7.69×10 ⁻⁵ <i>11</i> ;
541.5	4	4612.7+x	18+	4071.2+x	16+	E2	0.0266 4	α (P)=8.55×10 ⁻⁶ <i>12</i> Mult.: A ₂ =0.38 <i>3</i> , A ₄ =-0.01 <i>5</i> . Doublet with 537.7 γ . α (K)=0.01883 <i>26</i> ; α (L)=0.00586 <i>8</i> ; α (M)=0.001465 <i>21</i> α (N)=0.000376 <i>5</i> ; α (O)=7.54×10 ⁻⁵ <i>11</i> ;
571.5	86	1248.7	4+	677.2	2+	E2	0.02353 <i>33</i>	$\alpha(F)=8.40\times10^{-5} I2$ Mult.: A ₂ =0.21 <i>I8</i> , A ₄ =0.03 <i>30</i> . $\alpha(K)=0.01689 \ 24; \ \alpha(L)=0.00500 \ 7;$ $\alpha(M)=0.001244 \ 17$ $\alpha(N)=0.000320 \ 4; \ \alpha(O)=6.42\times10^{-5} \ 9;$

Continued on next page (footnotes at end of table)

196 Pt(12 C,6n γ) 1990Fa03 (continued)

γ ⁽²⁰²Po) (continued)</sup>

E_{γ}^{\dagger}	I_{γ}^{\dagger}	E _i (level)	\mathbf{J}_i^{π}	E_f	\mathbf{J}_f^{π}	Mult. [‡]	α [#]	Comments
575.5	31	3616.0+x	14+	3040.6+x	12+	E2	0.02316 32	$\alpha(P)=7.22\times10^{-6} \ 10$ Mult.: A ₂ =0.22 2, A ₄ =0.05 3. $\alpha(K)=0.01666 \ 23; \ \alpha(L)=0.00490 \ 7;$ $\alpha(M)=0.001219 \ 17$ $\alpha(N)=0.000313 \ 4; \ \alpha(O)=6.29\times10^{-5} \ 9;$
600.4	1	5209.6+x	(20+)	4609.2+x	(18 ⁺)	(E2)	0.02106 29	$\alpha(P)=7.08\times10^{-6} \ 10$ Mult.: A ₂ =0.40 3, A ₄ =-0.02 5. $\alpha(K)=0.01531 \ 21; \ \alpha(L)=0.00433 \ 6; \\\alpha(M)=0.001075 \ 15$ $\alpha(N)=0.000276 \ 4; \ \alpha(O)=5.56\times10^{-5} \ 8;$
667.6	2	4738.8+x	18+	4071.2+x	16+	E2	0.01670 <i>23</i>	$\alpha(P)=6.31\times10^{-6} 9$ Mult.: A ₂ =0.17 <i>11</i> , A ₄ =0.02 <i>14</i> . $\alpha(K)=0.01243 17; \alpha(L)=0.00323 5;$ $\alpha(M)=0.000794 11$ $\alpha(N)=0.0002039 29; \alpha(O)=4.13\times10^{-5} 6;$
677.2	100	677.2	2+	0	0+	E2	0.01620 2 <i>3</i>	$\begin{aligned} &\alpha(P)=4.76\times 10^{-6} \ 7\\ &\text{Mult.: } A_2=0.45 \ 8, \ A_4=-0.02 \ 12.\\ &\alpha(K)=0.01210 \ 17; \ \alpha(L)=0.00310 \ 4;\\ &\alpha(M)=0.000763 \ 11\\ &\alpha(N)=0.0001960 \ 27; \ \alpha(O)=3.97\times 10^{-5} \ 6; \end{aligned}$
679.4	39	2897.5+x	11-	2218.1+x	9-	E2	0.01609 23	$\alpha(P)=4.59\times10^{-6} 6$ Mult.: A ₂ =0.19 <i>I</i> , A ₄ =0.06 <i>2</i> . $\alpha(K)=0.01202 I7; \alpha(L)=0.00308 4;$ $\alpha(M)=0.000756 II$ $\alpha(N)=0.0001942 27; \alpha(O)=3.93\times10^{-5} 6;$ $\alpha(P)=4.55\times10^{-6} 6$
706.0 912.5	2 29	5528.9+x 2604.2+x	11-	4822.9+x 1691.7+x	(20 ⁺) 8 ⁺	E3	0.02140 <i>30</i>	Mult.: A ₂ =0.36 3, A ₄ =-0.01 5. $\alpha(K)=0.01515 21; \alpha(L)=0.00470 7; \alpha(M)=0.001179 17$ $\alpha(N)=0.000304 4; \alpha(O)=6.15\times10^{-5} 9; \alpha(P)=7.08\times10^{-6} 10$ Mult.: A ₂ =0.22 3, A ₄ =0.08 5.

[†] From 1990Fa03. No uncertainties were given by the authors.
[‡] From 1990Fa03 based on γ(θ), unless otherwise stated.
[#] Additional information 2.

