202 Bi ε + β ⁺ decay 1974Go32,1985Dz05

		History	
Туре	Author	Citation	Literature Cutoff Date
Full Evaluation	F. G. Kondev	NDS 196,342 (2024)	1-Sep-2023

Parent: ²⁰²Bi: E=0; J^{π}=5⁺; T_{1/2}=1.71 h 4; Q(ε)=5190 15; % ε +% β ⁺ decay=100 1974Go32: Mass separated ²⁰²Bi source. Measured: E γ , I γ , ce, $\gamma\gamma$ coin. 1985Dz05: ²⁰²Bi accumulated from chemically and mass separated source of ²⁰²Po. Measured: Ice_K. Others: 1970DaZM, 1970Ha14, 1973Pa03. $\gamma^{\pm} \approx 1\%$ (1974Go32).

²⁰²Pb Levels

E(level) [†]	$J^{\pi \ddagger}$	T _{1/2} ‡	E(level) [†]	J ^{π‡}
0.0	0^{+}	5.25×10 ⁴ y 28	2386.82 7	5-
960.67 5	2+	≤0.1 ns	2517.28 8	3-
1382.84 6	4+	1.97 ns 2	2609.58 7	5-
1623.06 7	4+		2618.88 8	4-,5-,6-
1915.12 7	4+		2750.50 13	6+
1965.14 7	4+		2898.76 7	5-
2040.32 7	5-		2916.53 8	4-,5-
2185.06 8	3+		2967.61 8	4-,5-
2208.43 8	7-	65.3 ns 4	3285.79 7	4-
2235.42 9	6+		3682.22 10	4-,5-
2289.24 8	6-		3723.52 9	4-
2324.93 9	$4^+, 5^+$		3820.87 8	5-
2360.46 8	$4^{-},5^{-}$			

[†] From a least-squares fit to $E\gamma$. [‡] From Adopted Levels.

E(decay)	E(level)	Ι <i>β</i> ⁺ ‡	$I\varepsilon^{\ddagger}$	Log <i>ft</i>	$I(\varepsilon + \beta^+)^{\dagger\ddagger}$	Comments
(1260, 15)	2020.07	1-	2 25 24	7 20 5	2.25.24	eV = 0.7050.2t eI = 0.15410.16t eM = -0.05075.7
$(1309\ 13)$	3820.87		2.35 24	7.20 5	2.35 24	$\varepsilon \mathbf{K} = 0.7950 \ 2; \ \varepsilon \mathbf{L} = 0.15410 \ 10; \ \varepsilon \mathbf{M} + = 0.05075 \ 7$
(1467 15)	3723.52		1.44 13	7.47.5	1.44 13	ε K=0.7961 2; ε L=0.1531 2; ε M+=0.05037 6
(1508 15)	3682.22	0.00126 19	2.18 16	7.32 4	2.18 16	av E β =240.9 68; ε K=0.7964 2; ε L=0.1528 2; ε M+=0.05023 6
(1904 15)	3285.79	0.039 3	6.6 4	7.05 3	6.6 4	av $E\beta$ =416.5 68; ε K=0.7957 2; ε L=0.1494 2; ε M+=0.04896 5
(2222 15)	2967.61	0.15 1	8.5 5	7.08 3	8.7 5	av $E\beta$ =55.8 66; ε K=0.7883 6; ε L=0.14635 17;
(2274 15)	2916.53	0.015 4	0.73 20	8.16 12	0.75 20	av E β =578.1 66; ϵ K=0.7865 6; ϵ L=0.14579 17;
(2291 15)	2898.76	0.063 7	2.9 3	7.57 5	3.0 3	ε M+=0.04767 6 av E β =585.9 66; ε K=0.7858 6; ε L=0.14558 18;
						$\varepsilon M + = 0.04760 \ 6$
(2440 15)	2750.50	0.025 6	0.80 20	8.19 12	0.82 21	av E β =650.7 66; ε K=0.7791 8; ε L=0.14377 20; ε M+=0.04698 7
(2571 15)	2618.88	0.31 2	7.4 5	7.27 3	7.7 5	av $E\beta$ =708.4 66; ε K=0.7718 <i>10</i> ; ε L=0.14196 22;
(2500.15)	2600 50	0.15.0	2.0.6			$\mathcal{E}M$ += 0.0463 / 8
(2580-15)	2609.58	0.17 2	3.9 6	7.55 7	4.1 6	av $E\beta = /12.5$ 66; $\varepsilon K = 0.7/12$ 10; $\varepsilon L = 0.14183$ 22; $\varepsilon M + = 0.04632$ 8
(2673 15)	2517.28	0.010 4	0.7 3	9.75 ¹ <i>u</i> 19	0.7 3	av $E\beta$ =751.3 63; ε K=0.7835 3; ε L=0.1524 2; ε M+=0.05025 6
(2803 15)	2386.82	0.32 4	5.0 6	7.52 5	5.3 6	av E β =810.3 66; ϵ K=0.7555 12; ϵ L=0.1383 3; ϵ M+=0.04513 9

 ε, β^+ radiations

Continued on next page (footnotes at end of table)

²⁰² Bi ε + β ⁺ decay	1974Go32,1985Dz05 (continued)
--	-------------------------------

ϵ, β^+ radiations (continued)

E(decay)	E(level)	Ιβ ⁺ ‡	Ie‡	Log ft	${\rm I}(\varepsilon\!+\!\beta^+)^{\dagger\ddagger}$
(2830 15)	2360.46	0.257 17	3.77 23	7.65 3	4.03 25
(2865 15)	2324.93	0.14 3	2.0 4	7.94 9	2.1 4
(2901 15)	2289.24	0.40 5	5.2 7	7.53 6	5.6 7
(2955 15)	2235.42	0.125 19	1.49 22	8.09 7	1.61 24
(2982 15)	2208.43	0.14 2	5.3 7	9.06 ¹ <i>u</i> 6	5.4 7
(3150 15)	2040.32	1.28 22	11.3 19	7.27 8	12.6 21
(3225 15)	1965.14	0.19 3	1.55 21	8.15 6	1.74 24
(3275 15)	1915.12	0.76 7	5.6 5	7.60 5	6.4 6
(3567 15)	1623.06	0.95 12	4.9 6	7.74 6	5.8 7
(3807 15)	1382.84	2.0 6	8.0 24	7.59 13	10 3

Comments
av Eβ=821.9 66; εK=0.7534 13; εL=0.1378 3;
$\varepsilon M += 0.04498 9$
av $E\beta = 837.5 \ 66$; $\varepsilon K = 0.7504 \ 13$; $\varepsilon L = 0.1372 \ 3$;
$\varepsilon M += 0.044779$
av $E\beta$ =853.2 66; ε K=0.7474 13; ε L=0.1366 3;
EWIT = 0.04450 I0
av $E\beta = 876.9 \ 0.7$; $EK = 0.7420 \ 14$; $EL = 0.1550 \ 5$; $EM + = 0.04422 \ 10$
av E β =880.6 63; ε K=0.7763 5; ε L=0.14920 17;
$\varepsilon M += 0.04909 6$
av E β =962.9 67; ε K=0.7235 16; ε L=0.1317 4;
€M+=0.04293 11
av E β =996.2 67; ε K=0.7155 17; ε L=0.1301 4;
<i>ε</i> M+=0.04240 <i>11</i>
av Eβ=1018.3 67; εK=0.7100 17; εL=0.1290 4;
<i>ε</i> M+=0.04204 <i>11</i>
av $E\beta$ =1148.0 67; ε K=0.6747 20; ε L=0.1221 4;
$\varepsilon M += 0.03978 \ I3$
av Eβ=1255.2 67; εK=0.6427 21; εL=0.1160 4;
$\varepsilon M += 0.03777 \ 13$

[†] From the decay scheme using intensity balance considerations.
[‡] Absolute intensity per 100 decays.

$\gamma(^{202}\text{Pb})$

Iy normalization: Deduced using $\Sigma I(\gamma+ce)$ [g.s.]=100%. No direct g.s. feeding is expected, since the transition (5⁺ to 0⁺) is L=5 forbidden.

${\rm E_{\gamma}}^{\dagger}$	$I_{\gamma}^{\dagger @}$	E _i (level)	\mathbf{J}_i^{π}	$\mathbf{E}_f = \mathbf{J}_f^{\pi}$	Mult. [‡]	δ^{\ddagger}	α [#]	Comments
80.75 13	0.76 11	2289.24	6-	2208.43 7-	M1		3.23 5	α (L)=2.47 4; α (M)=0.580 9 α (N)=0.1474 22; α (O)=0.0294 4; α (P)=0.00314 5 %I γ =0.76 11
97.58 <i>13</i>	0.24 4	2386.82	5-	2289.24 6-	M1		10.02 15	Mult.: $\alpha(L12)\exp=2.5 5$, $\alpha(L3)\exp<0.8$. $\alpha(M)\exp=0.55 13$ (1985Dz05). $\alpha(K)=8.16 12$; $\alpha(L)=1.427 21$; $\alpha(M)=0.335 5$ $\alpha(N)=0.0851 12$; $\alpha(O)=0.01696 25$; $\alpha(P)=0.001811 26$ %Iy=0.24 4
125.21 8	1.20 18	2040.32	5-	1915.12 4+	E1		0.2500 35	Mult.: $\alpha(L12)\exp=1.4$ 6, $\alpha(L3)\exp<0.3$. $\alpha(L12)\exp=1.3$ 3 (1985Dz05). $\alpha(K)=0.2001$ 28; $\alpha(L)=0.0382$ 5; $\alpha(M)=0.00899$ 13 $\alpha(N)=0.002251$ 32; $\alpha(O)=0.000426$ 6; $\alpha(P)=3.43\times10^{-5}$ 5 %Iy=1.19 18 Mult.: $\alpha(L12)\exp<0.21$
^x 127.71 14 ^x 158.16 15	0.10 2 0.35 5				M1		2.53 4	With: $\alpha(E12)\exp(-0.21)$ %Iγ=0.099 20 $\alpha(K)=2.068$ 29; $\alpha(L)=0.357$ 5; $\alpha(M)=0.0837$ 12 $\alpha(N)=0.02128$ 30; $\alpha(O)=0.00424$ 6; $\alpha(P)=0.000453$ 6 %Iγ=0.35 5
168.11 <i>4</i>	4.8 <i>3</i>	2208.43	7-	2040.32 5-	E2		0.797 11	Mult.: $\alpha(K)\exp=1.6 5$, $\alpha(L12)\exp=0.40 6$. $\alpha(K)\exp=2.3 7$ (1985Dz05). $\alpha(K)=0.2485 35$; $\alpha(L)=0.409 6$; $\alpha(M)=0.1074 15$ $\alpha(N)=0.0271 4$; $\alpha(O)=0.00487 7$; $\alpha(P)=0.0002271 32$ %I γ =4.77 30 Mult.: $\alpha(K)\exp=0.32 7$, $\alpha(L3)\exp=0.142 11$. $\alpha(K)\exp=0.27 3$,
^x 195.63 <i>10</i>	0.29 5				M1		1.393 20	α (L3)exp=0.140 23 (1985Dz05). α (K)=1.137 16; α (L)=0.1957 28; α (M)=0.0459 6 α (N)=0.01165 16; α (O)=0.002323 33; α (P)=0.0002483 35 %I γ =0.29 5
^x 198.09 15	0.09 2				M1		1.345 <i>19</i>	Mult.: From α (K)exp=1.2 3, K/L \approx 7. α (K)=1.098 16; α (L)=0.1889 27; α (M)=0.0443 6 α (N)=0.01125 16; α (O)=0.002243 32; α (P)=0.0002397 34 %I γ =0.089 20
^x 204.75 15	0.27 4							Mult.: From α (K)exp=1.7 7, K/L>2. %Iy=0.27 4
x216.00 <i>10</i>	0.23 3				M1		1.056 15	α (L)exp<0.3. α (K)=0.863 <i>12</i> ; α (L)=0.1482 <i>21</i> ; α (M)=0.0347 <i>5</i> α (N)=0.00882 <i>12</i> ; α (O)=0.001759 <i>25</i> ; α (P)=0.0001880 <i>26</i> %I γ =0.228 <i>30</i>
222.79 5	0.70 10	2609.58	5-	2386.82 5-	M1+E2	0.26 25	0.93 10	Mult.: From α (K)exp=0.8 3, K/L>2. α (K)=0.75 10; α (L)=0.1351 26; α (M)=0.0318 4

From ENSDF

				202	Bi $\varepsilon + \beta^+$ decay	1974Go32,198	5Dz05 (cont	tinued)
					2	(²⁰² Pb) (continued	1)	
${\rm E_{\gamma}}^{\dagger}$	$I_{\gamma}^{\dagger @}$	E _i (level)	\mathbf{J}_i^{π}	$\mathbf{E}_f = \mathbf{J}_f^{\pi}$	Mult. [‡]	δ^{\ddagger}	a#	Comments
								α (N)=0.00809 <i>11</i> ; α (O)=0.001604 <i>30</i> ; α (P)=0.000166 <i>14</i> %I γ =0.70 <i>10</i> Mult.: α (K)exp=0.72 <i>12</i> , K/L \approx 5. α (K)exp=0.80 <i>16</i> (1985D ₇ 05)
232.06 5	0.34 5	2618.88	4-,5-,6-	2386.82 5-	M1(+E2)	≤0.4	0.82 4	$\alpha(K)=0.67 4; \alpha(L)=0.1201 20; \alpha(M)=0.0283 4$ $\alpha(N)=0.00719 10; \alpha(O)=0.001426 24; \alpha(P)=0.000148 6$ $\% I\gamma=0.34 5$ Mult: $\alpha(K)=0.70 25, K/L>3, \alpha(K)=0.88 22$
240.18 4	4.5 3	1623.06	4+	1382.84 4+	M1(+E2)	<0.5	0.73 6	(1985Dz05). $\alpha(K)=0.59 5; \alpha(L)=0.1082 25; \alpha(M)=0.0256 4$ $\alpha(N)=0.00650 11; \alpha(O)=0.001285 29; \alpha(P)=0.000132 8$ $\%_{I\gamma}=4.47 30$
248.92 <i>4</i>	3.09 18	2289.24	6-	2040.32 5-	M1+E2	0.39 +9-11	0.646 <i>31</i>	Mult.: $\alpha(L12)\exp=0.126 \ 12, \ \alpha(L3)\exp<0.004.$ $\alpha(L12)\exp=0.120 \ 14 \ (1985Dz05).$ δ : From adopted gammas. $\alpha(K)=0.519 \ 29; \ \alpha(L)=0.0969 \ 19; \ \alpha(M)=0.0230 \ 4 \ \alpha(N)=0.00583 \ 9; \ \alpha(O)=0.001151 \ 22; \ \alpha(P)=0.000117 \ 5 \ \%I\gamma=3.07 \ 18$
^x 285.58 12	0.22 3				M1		0.488 7	Mult.: $\alpha(K)\exp=0.51 \ 3, \ K/L>2.5. \ \alpha(K)\exp=0.55 \ 6$ (1985Dz05). $\alpha(K)=0.399 \ 6; \ \alpha(L)=0.0682 \ 10; \ \alpha(M)=0.01596 \ 22$ $\alpha(N)=0.00406 \ 6; \ \alpha(O)=0.000809 \ 11; \ \alpha(P)=8.65\times10^{-5} \ 12$ $\kappa'_{L_2=0.218 \ 30}$
291.93 9	0.26 4	1915.12	4+	1623.06 4+	M1+E2	0.5 4	0.39 8	Mult.: From α (K)exp=0.38 8, K/L>1.5. α (K)=0.31 8; α (L)=0.060 6; α (M)=0.0142 11 α (N)=0.00360 27; α (O)=0.00071 7; α (P)=7.1×10 ⁻⁵ 13 %I γ =0.26 4
^x 316.3 4 318.0 5	0.10 <i>3</i> 0.10 <i>3</i>	3285.79	4-	2967.61 4-,	5 ⁻ [M1]		0.364 5	Mult.: α (K)exp=0.30 <i>12</i> , K/L>2. α (K)exp=0.31 <i>10</i> (1985Dz05). %I γ =0.099 <i>30</i> α (K)=0.298 <i>4</i> ; α (L)=0.0507 <i>7</i> ; α (M)=0.01188 <i>17</i>
320.14 5	3.14 <i>18</i>	2360.46	4-,5-	2040.32 5-	M1		0.357 5	α (N)=0.00302 4; α (O)=0.000602 9; α (P)=6.44×10 ⁻⁵ 9 %I γ =0.099 30 α (K)=0.292 4; α (L)=0.0498 7; α (M)=0.01166 16
								$\alpha(N)=0.00296 4; \alpha(O)=0.000591 8; \alpha(P)=6.32\times10^{-5} 9$ %Iy=3.12 18 Mult : $\alpha(K)=0.284, \alpha(K)=0.303 (1985D205)$
342.04 11	0.43 6	1965.14	4+	1623.06 4+	M1+E2	0.72 +38-33	0.22 5	$\alpha(K)=0.18 \ 4; \ \alpha(L)=0.035 \ 4; \ \alpha(M)=0.0084 \ 8 \\ \alpha(N)=0.00214 \ 21; \ \alpha(O)=0.00042 \ 5; \ \alpha(P)=4.1\times10^{-5} \ 7 \\ \%I\gamma=0.43 \ 6 \\ Mult.: \ \alpha(K)exp=0.15 \ 5, \ K/L\approx6. \ \alpha(K)exp=0.23 \ 7 \\ (1985Dz05).$

From ENSDF

				²⁰² Bi	ε + β^+ decay	1974Go32,1985	Dz05 (continue	ed)
					<u> </u>	²⁰² Pb) (continued))	
E_{γ}^{\dagger}	$I_{\gamma}^{\dagger @}$	E _i (level)	\mathbf{J}_i^{π}	$\mathbf{E}_f \qquad \mathbf{J}_f^{\pi}$	Mult. [‡]	δ^{\ddagger}	α #	Comments
346.47 6	4.6 3	2386.82	5-	2040.32 5-	M1+E2	0.19 14	0.281 14	$\alpha(K)=0.229 \ 12; \ \alpha(L)=0.0395 \ 13; \ \alpha(M)=0.00926 \ 27$ $\alpha(N)=0.00235 \ 7; \ \alpha(O)=0.000468 \ 15; \ \alpha(P)=4.97\times10^{-5} \ 22$ %I $\gamma=4.57 \ 30$ Mult.: $\alpha(K)\exp=0.229 \ 12. \ \alpha(K)\exp=0.257 \ 23$ (1985Dz05).
348.77 17	0.6 2	2967.61	4-,5-	2618.88 4-,5-,6-	M1(+E2)	≤0.7	0.249 <i>34</i>	δ: From α (K)exp=0.229 <i>12</i> . α (K)=0.201 <i>31</i> ; α (L)=0.0365 <i>30</i> ; α (M)=0.0086 <i>6</i> α (N)=0.00219 <i>16</i> ; α (O)=0.000433 <i>35</i> ; α (P)=4.5×10 ⁻⁵ <i>5</i> % <i>l</i> γ=0.60 <i>20</i>
358.05 <i>13</i>	0.30 5	2967.61	4-,5-	2609.58 5-	M1+E2	1.22 +42-28	0.148 25	Mult.: α (K)exp=0.26 8. α (K)exp \approx 0.32 (1985Dz05). α (K)=0.113 23; α (L)=0.0266 22; α (M)=0.0065 5 α (N)=0.00164 12; α (O)=0.000316 26; α (P)=2.8×10 ⁻⁵ 4 %Iy=0.30 5
369.27 6	0.50 7	3285.79	4-	2916.53 4 ⁻ ,5 ⁻	M1(+E2)	≤0.5	0.225 18	Mult.: $\alpha(K)\exp=0.103\ 24\ (1985Dz05).\ \alpha(K)\exp=0.17\ 6, K/L>1.5\ (1974Go32).$ $\alpha(K)=0.183\ 16;\ \alpha(L)=0.0321\ 17;\ \alpha(M)=0.0076\ 4$ $\alpha(N)=0.00192\ 9;\ \alpha(O)=0.000381\ 20;\ \alpha(P)=4.00\times10^{-5}\ 29$ $\%I\gamma=0.50\ 7$ Mult.: $\alpha(K)\exp=0.18\ 4,\ K/L\approx6,\ \alpha(K)\exp=0.22\ 4$
386.86 <i>13</i>	0.14 2	3285.79	4-	2898.76 5-	M1(+E2)	≤1.1	0.17 4	(1985Dz05). $\alpha(K)=0.14 4; \ \alpha(L)=0.026 4; \ \alpha(M)=0.0061 9$ $\alpha(N)=0.00155 22; \ \alpha(O)=0.00031 5; \ \alpha(P)=3.1\times10^{-5} 7$ $\%_{I\gamma}=0.139 20$ Mult: $\alpha(K)\exp=0.15 5$ K/L ≈ 4
^x 412.27 <i>18</i> 417.25 <i>12</i>	0.29 <i>5</i> 0.42 <i>6</i>	2040.32	5-	1623.06 4+	[E1]		0.01406 20	$%I_{\gamma}=0.295$ α(K)=0.01159 16; $α(L)=0.001895$ 27; $α(M)=0.000441$ 6 $α(N)=0.0001113$ 16; $α(O)=2.177 \times 10^{-5}$ 31; $α(P)=2.097 \times 10^{-6}$ 29
422.13 <i>4</i> *438.22 5	84.3 <i>25</i> 1.56 <i>24</i>	1382.84	4+	960.67 2+	E2		0.0448 <i>6</i>	%1γ=0.42 δ $\alpha(K)=0.0299 4; \alpha(L)=0.01119 16; \alpha(M)=0.00281 4$ $\alpha(N)=0.000712 10; \alpha(O)=0.0001333 19;$ $\alpha(P)=9.64\times10^{-6} 14$ %1γ=83.7 25 Mult.: $\alpha(K)\exp=0.0296 8, K/L=2.68 9.$ ce(K)(422)/ce(K)(960)=3.9 4 (1957Mc40). %1γ=1.55 24
x504.23 22 x514.42 9 529.61 10	0.28 5 1.63 24 0.41 6	2916.53	4-,5-	2386.82 5-	M1(+E2)	≤1.2	0.073 20	$\%$ I _{γ} =0.28 5 %I _{γ} =1.62 24 α (K)=0.059 17; α (L)=0.0106 22; α (M)=0.0025 5 α (N)=0.00064 12; α (O)=0.000126 26; α (P)=1.30×10 ⁻⁵

S

From ENSDF

					²⁰² Bi ε	+ β^+ decay	1974Go	32,1985Dz05 ((continued)
						γ	(²⁰² Pb) (co	ntinued)	
${\rm E_{\gamma}}^{\dagger}$	$I_{\gamma}^{\dagger @}$	E _i (level)	\mathbf{J}_i^{π}	E_f	J_f^π	Mult. [‡]	δ^{\ddagger}	α #	Comments
									33 %Iγ=0.41 6 Mult.: α(K)exp=0.068 25, K/L<2.5. α(K)exp=0.09 3 (1985Dz05).
532.34 10	0.44 7	1915.12	4+	1382.84	4+	[M1]		0.0915 <i>13</i>	α (K)=0.0750 <i>11</i> ; α (L)=0.01261 <i>18</i> ; α (M)=0.00295 <i>4</i> α (N)=0.000749 <i>10</i> ; α (O)=0.0001494 <i>21</i> ; α (P)=1.601×10 ⁻⁵ 22 %[v=0.44 7
534.7 5	0.17 3	3820.87	5-	3285.79	4-	[M1]		0.0904 13	$\alpha(K) = 0.0741 \ 11; \ \alpha(L) = 0.01246 \ 18; \ \alpha(M) = 0.00291 \ 4$ $\alpha(N) = 0.000740 \ 11; \ \alpha(O) = 0.0001476 \ 21; \ \alpha(P) = 1.582 \times 10^{-5} \ 23$
569.27 4	4.8 <i>3</i>	2609.58	5-	2040.32	5-	M1+E2	0.58 9	0.0628 33	$\alpha(K)=0.0511\ 28;\ \alpha(L)=0.0090\ 4;\ \alpha(M)=0.00212\ 9$ $\alpha(N)=0.000538\ 22;\ \alpha(O)=0.000107\ 4;\ \alpha(P)=1.11\times10^{-5}\ 6$ $\%_{I\gamma}=4.77\ 30$ Mult.: $\alpha(K)\exp=0.049\ 3;\ K/L=6.3\ L,\ \alpha(K)\exp=0.056\ 5$
578.56 4	7.4 4	2618.88	4-,5-,6-	2040.32	5-	M1+E2	0.21 16	0.071 4	(1985Dz05). $\alpha(K)=0.058 \ 4; \ \alpha(L)=0.0099 \ 5; \ \alpha(M)=0.00231 \ 11$ $\alpha(N)=0.000586 \ 28; \ \alpha(O)=0.000117 \ 6; \ \alpha(P)=1.25\times10^{-5} \ 7$ $\%_{I}y=7.4 \ 4$ Mult: $\alpha(K)=0.0566 \ 22 \ K/I = 6.4.8 \ \alpha(K)\exp[-0.064 \ 5]$
582.33 8	0.97 15	1965.14	4+	1382.84	4+	M1+E2	0.46 28	0.063 9	$\begin{array}{l} \alpha(L) \exp[=0.0108 \ 12 \ (1985 Dz05). \\ \alpha(L) \exp[=0.0108 \ 12 \ (1985 Dz05). \\ \alpha(K) = 0.052 \ 8; \ \alpha(L) = 0.0089 \ 10; \ \alpha(M) = 0.00209 \ 24 \\ \alpha(N) = 0.00053 \ 6; \ \alpha(O) = 0.000106 \ 12; \ \alpha(P) = 1.11 \times 10^{-5} \ 15 \\ \% Iy = 0.96 \ 15 \\ \text{Mult: } \ \alpha(K) \exp[=0.047 \ 11 \ K/l > 3.0 \ \alpha(K) \exp[=0.056 \ 11 \ K/l > 3.0 \ M/l > 3$
591.5 <i>3</i>	0.14 2	2916.53	4-,5-	2324.93	4+,5+	[E1]		0.00678 10	(1985D205). $\alpha(K)=0.00562 \ 8; \ \alpha(L)=0.000890 \ 12; \ \alpha(M)=0.0002064 \ 29 \ \alpha(N)=5.21\times10^{-5} \ 7; \ \alpha(O)=1.027\times10^{-5} \ 14; \ \alpha(P)=1.022\times10^{-6} \ 14 \ \%_{1\gamma}=0.139 \ 20 \ 20$
x 599.30 10 x 632.00 17 644.44 5	0.53 8 0.18 3 0.67 10	2609.58	5-	1965.14	4+	E1		0.00572 8	$\%_{1\gamma=0.53}$ 8 $\%_{1\gamma=0.179}$ 30 $\alpha(K)=0.00475$ 7; $\alpha(L)=0.000746$ 10; $\alpha(M)=0.0001729$ 24 $\alpha(N)=4.37\times10^{-5}$ 6; $\alpha(O)=8.61\times10^{-6}$ 12; $\alpha(P)=8.64\times10^{-7}$ 12 $\%_{1\gamma}=0.67$ 10
657.49 <i>4</i>	61.0 <i>18</i>	2040.32	5-	1382.84	4+	E1		0.00550 8	Mult.: $\alpha(K)\exp\leq 0.0075$ (1985Dz05). Also: $\alpha(K)\exp<0.015$ (1974Go32). $\alpha(K)=0.00456$ 6; $\alpha(L)=0.000716$ 10; $\alpha(M)=0.0001659$ 23 $\alpha(N)=4.19\times10^{-5}$ 6; $\alpha(O)=8.27\times10^{-6}$ 12; $\alpha(P)=8.31\times10^{-7}$ 12 %I $\gamma=60.6$ 18 Mult.: $\alpha(K)\exp=0.445$ 14, K/L=5.8 7, $\alpha(K)\exp=0.0049$ 4.
662.55 11	1.32 20	1623.06	4+	960.67	2+	E2		0.01546 22	α (L)exp=0.00082 9 (1985Dz05). α (K)=0.01168 16; α (L)=0.00287 4; α (M)=0.000700 10

					202	Bi ε + β^+ deca	ay 197 4	Go32,1985Dz	05 (continued)
							$\gamma(^{202}\text{Pb})$	(continued)	
${\rm E}_{\gamma}^{\dagger}$	$I_{\gamma}^{\dagger @}$	E_i (level)	\mathbf{J}_i^{π}	E_f	\mathbf{J}_{f}^{π}	Mult. [‡]	δ^{\ddagger}	α #	Comments
									α (N)=0.0001773 25; α (O)=3.40×10 ⁻⁵ 5; α (P)=2.95×10 ⁻⁶ 4
^x 666.60 <i>11</i> ^x 671.01 <i>12</i>	0.85 <i>13</i> 0.45 7								% $1\gamma = 1.31\ 20$ Mult.: $\alpha(K)\exp=0.016\ 5$, K/L \approx 5. $\alpha(K)\exp=0.017\ 5\ (1985Dz05)$. % $1\gamma = 0.84\ 13$ % $1\gamma = 0.45\ 7$
676.19 5	1.9 3	3285.79	4-	2609.58	5-	M1(+E2)	≤0.5	0.0455 35	$ \begin{aligned} &\alpha(\mathbf{K}) = 0.0372 \ 29; \ \alpha(\mathbf{L}) = 0.0063 \ 4; \ \alpha(\mathbf{M}) = 0.00147 \ 9 \\ &\alpha(\mathbf{N}) = 0.000374 \ 24; \ \alpha(\mathbf{O}) = 7.5 \times 10^{-5} \ 5; \ \alpha(\mathbf{P}) = 7.9 \times 10^{-6} \ 6 \\ &\alpha(\mathbf{L}) = 1.89 \ 30 \end{aligned} $
690.33 17	0.19 3	2898.76	5-	2208.43	7-	E2		0.01415 20	Mult.: α (K)exp=0.039 <i>10</i> , K/L>4.0. α (K)exp=0.042 <i>9</i> (1985Dz05). α (K)=0.01077 <i>15</i> ; α (L)=0.00257 <i>4</i> ; α (M)=0.000625 <i>9</i> α (N)=0.0001583 22; α (O)=3.05×10 ⁻⁵ <i>4</i> ; α (P)=2.68×10 ⁻⁶ <i>4</i>
702.2 4	1.0 3	2324.93	4+,5+	1623.06	4+	M1(+E2)	≤0.8	0.038 6	$%_{1}\gamma=0.189 30$ Mult.: α(K)exp<0.028. α(K)=0.031 5; α(L)=0.0054 7; α(M)=0.00126 16 α(N)=0.00032 4; α(O)=6.3×10 ⁻⁵ 8; α(P)=6.7×10 ⁻⁶ 10
^x 705.6 <i>5</i> 714.63 <i>25</i>	0.22 7 0.27 <i>4</i>	3682.22	4-,5-	2967.61	4-,5-	M1(+E2)	≤0.5	0.0394 <i>30</i>	%I γ =0.99 30 Mult.: α (K)exp=0.03 1. α (K)exp=0.042 13 (1985Dz05). %I γ =0.22 7 α (K)=0.0323 25; α (L)=0.00545 35; α (M)=0.00127 8
			y-		7-				α (N)=0.000324 20; α (O)=6.4×10 ⁻⁵ 4; α (P)=6.9×10 ⁻⁶ 5 %I γ =0.27 4 Mult.: α (K)exp=0.044 14. α (K)exp=0.035 9 (1985Dz05).
^x 717.1 <i>3</i> ^x 763.85 <i>14</i>	0.17 <i>3</i> 0.55 9								%Iy=0.169 30 %Iy=0.55 9
768.57 10	0.68 10	3285.79	4-	2517.28	3-	M1(+E2)	≤0.34	0.0338 13	$\alpha(K)=0.0278 \ 11; \ \alpha(L)=0.00464 \ 16; \ \alpha(M)=0.00108 \ 4 \\ \alpha(N)=0.000275 \ 9; \ \alpha(O)=5.49\times10^{-5} \ 19; \ \alpha(P)=5.87\times10^{-6} \ 22 \\ \alpha(V)=0.68 \ 10 \ Comparison (C) \ 10 \ C) \ 10 \ Comparison (C) \ 10 \ Comparison (C) \ 10 \ Comparison (C) \ 10 \ C) \ 10 \ Comparison (C) \ 10 \ 10 \ C) \ 10 \ Comparison (C) \ 10 \ Comparison (C) \ 10 \ C) \ 10 \ Comparison (C) \ 10 \ Comparison (C) \ 10 \ C) \ 10 \ Comparison (C) \ 10 \ C) \ 10 \ Comparison (C) \ 10 \ C) \ 10 \ Comparison (C) \ 10 \ C) \ 10 \ Comparison (C) \ 10 \ C) \ 10 \ Comparison (C) \ 10 \ C) \ 10 \ Comparison (C) \ 10 \ C) \ 10 \ C) \ 10 \ Comparison (C) \ 10 \ C) \ 10 \ C) \ 10 \ Comparison (C) \ 10 \ C) \ 10 \ Comparison (C) \ 10 \ C) \ 10 \ $
783.54 25	0.33 5	3682.22	4-,5-	2898.76	5-	M1(+E2)	≤0.6	0.0304 <i>30</i>	Mult.: $\alpha(K)\exp=0.036 \ 8, \ K/L>4. \ \alpha(K)\exp=0.032 \ 6 \ (1985Dz05).$ $\alpha(K)=0.0249 \ 25; \ \alpha(L)=0.0042 \ 4; \ \alpha(M)=0.00098 \ 8 \ \alpha(N)=0.000249 \ 21; \ \alpha(O)=5.0\times10^{-5} \ 4; \ \alpha(P)=5.3\times10^{-6} \ 5$
^x 788.4 5	0.75 11								% $I\gamma$ =0.33 5 Mult.: α (K)exp=0.03 <i>1</i> . α (K)exp=0.028 7 (1985Dz05). % $I\gamma$ =0.75 <i>11</i>
802.25 8	0.42 6	2185.06	3+	1382.84	4+	M1+E2	0.7 6	0.024 7	$\alpha(\mathbf{K})=0.020\ 6;\ \alpha(\mathbf{L})=0.0034\ 8;\ \alpha(\mathbf{M})=0.00081\ 18$ $\alpha(\mathbf{N})=0.00021\ 5;\ \alpha(\mathbf{O})=4.1\times10^{-5}\ 10;\ \alpha(\mathbf{P})=4.3\times10^{-6}\ 11$ $\alpha(\mathbf{V})=0.42\ 6$
825.4 3	0.22 8	2208.43	7-	1382.84	4+	E3		0.02440 <i>34</i>	Mult.: $\alpha(K)\exp=0.020 5$ (1985Dz05). $\alpha(K)\exp<0.025$ (1974Go32). $\alpha(K)=0.01708 24; \alpha(L)=0.00552 8; \alpha(M)=0.001379 19$ $\alpha(N)=0.000351 5; \alpha(O)=6.70\times10^{-5} 9; \alpha(P)=5.71\times10^{-6} 8$
852.57 7	2.30 14	2235.42	6+	1382.84	4+	E2		0.00914 13	$\alpha_{1\gamma=0.22} \delta$ Mult.: $\alpha(K)\exp=0.05 \ 3 \ (1985Dz05).$ $\alpha(K)=0.00716 \ 10; \ \alpha(L)=0.001503 \ 21; \ \alpha(M)=0.000361 \ 5$

 $^{202}_{82}\text{Pb}_{120}$ -7

				20	² Bi ε + β ⁺ deca	y 1974Go32,	1985Dz05 (cor	ntinued)
						γ ⁽²⁰² Pb) (contin	nued)	
${\rm E_{\gamma}}^{\dagger}$	$I_{\gamma}^{\dagger @}$	E _i (level)	J_i^π	$\mathbf{E}_f \qquad \mathbf{J}_f^{\pi}$	Mult. [‡]	δ^{\ddagger}	α [#]	Comments
				<u> </u>				$\alpha(N)=9.14\times10^{-5} \ 13; \ \alpha(O)=1.776\times10^{-5} \ 25; \ \alpha(P)=1.654\times10^{-6} \ 23 \ \% I\gamma=2.28 \ 14 \ Mult.: From \ \alpha(K)exp=0.0083 \ 17. \ \alpha(K)exp=0.0091 \ 18 \ Mult.$
858.42 5	1.65 25	2898.76	5-	2040.32 5-	[M1]		0.0263 4	(1985Dz05). α (K)=0.02165 30; α (L)=0.00359 5; α (M)=0.000837 12 α (N)=0.0002126 30; α (O)=4.24×10 ⁻⁵ 6; α (P)=4.56×10 ⁻⁶ 6 %I γ =1.64 25
⁴ 871.3 3 876.21 6	0.14 2 1.07 <i>16</i>	2916.53	4-,5-	2040.32 5-	M1+E2	1.3 +10-5	0.015 4	%Iγ=0.139 20 α (K)=0.0119 33; α (L)=0.0021 5; α (M)=0.00051 11 α (N)=0.000129 28; α (O)=2.5×10 ⁻⁵ 6; α (P)=2.6×10 ⁻⁶ 7 %Iγ=1.06 16 Multi-s α(K) sym=0.012 2 (1085D=05)
899.00 <i>11</i>	0.34 5	3285.79	4-	2386.82 5-	M1(+E2)	≤0.4	0.0223 11	Mult.: $\alpha(\mathbf{K})\exp=0.012$ 5 (1985) $\Omega(\mathbf{M})=0.000713$ 31 $\alpha(\mathbf{K})=0.0183$ 9; $\alpha(\mathbf{L})=0.00305$ 14; $\alpha(\mathbf{M})=0.000713$ 31 $\alpha(\mathbf{N})=0.000181$ 8; $\alpha(\mathbf{O})=3.61\times10^{-5}$ 16; $\alpha(\mathbf{P})=3.87\times10^{-6}$ 19 $\%_{1}\gamma=0.34$ 5 Mult.: $\alpha(\mathbf{K})\exp=0.020$ 5, $\alpha(\mathbf{K})\exp=0.021$ 4 (1085) $\Omega(\mathbf{S})$
904.24 9	0.30 5	3820.87	5-	2916.53 4 ⁻ ,5	5- M1+E2	2.9 11	0.0097 <i>19</i>	Mult.: $\alpha(\mathbf{K})\exp=0.020$ 3. $\alpha(\mathbf{K})\exp=0.021$ 4 (1983D203). $\alpha(\mathbf{K})=0.0077$ 16; $\alpha(\mathbf{L})=0.00150$ 24; $\alpha(\mathbf{M})=0.00036$ 5 $\alpha(\mathbf{N})=9.0\times10^{-5}$ 14; $\alpha(\mathbf{O})=1.77\times10^{-5}$ 28; $\alpha(\mathbf{P})=1.72\times10^{-6}$ 33 %I $\gamma=0.30$ 5 Mult.: From $\alpha(\mathbf{K})\exp=0.0077$ 16 (1985D205).
^x 915.2 <i>3</i> 927.28 <i>4</i>	0.15 2 7.2 4	2967.61	4-,5-	2040.32 5-	M1		0.02159 30	%I γ =0.149 20 α (K)=0.01776 25; α (L)=0.00294 4; α (M)=0.000684 10 α (N)=0.0001739 24; α (O)=3.47×10 ⁻⁵ 5; α (P)=3.73×10 ⁻⁶ 5 %I γ =7.2 4 Mult.: α (K)exp=0.0186 10, K/L=5.4 6. α (K)exp=0.0192 18
942.07 7	1.2 2	2324.93	4+,5+	1382.84 4+	M1+E2	0.6 5	0.017 4	(1985D205). $\alpha(K)=0.0141 \ 32; \ \alpha(L)=0.0024 \ 5; \ \alpha(M)=0.00056 \ 11$ $\alpha(N)=0.000142 \ 27; \ \alpha(O)=2.8\times10^{-5} \ 5; \ \alpha(P)=3.0\times10^{-6} \ 6$ $\%I\gamma=1.19 \ 20$
954.47 6	7.9 5	1915.12	4+	960.67 2+	E2		0.00730 10	Mult.: α (K)exp=0.014 3 (1985Dz05). α (K)=0.00579 8; α (L)=0.001150 16; α (M)=0.000274 4 α (N)=6.95×10 ⁻⁵ 10; α (O)=1.356×10 ⁻⁵ 19; α (P)=1.295×10 ⁻⁶ 18
960.67 5	100	960.67	2+	0.0 0+	E2		0.00720 <i>10</i>	$%1\gamma$ ='.8 5 Mult.: α(K)exp=0.0058 3, K/L=4.90 22. α(K)exp=0.0061 7, α(L)exp=0.00118 24 (1985Dz05). α(K)=0.00572 8; α(L)=0.001132 16; α(M)=0.000270 4 α(N)=6.84×10 ⁻⁵ 10; α(O)=1.336×10 ⁻⁵ 19; α(P)=1.278×10 ⁻⁶ 18 %Iγ=99.285 10 Mult.: α(K)exp=0.00585 28, K/L=4.90 22.

 ∞

				2	⁰² Bi ε + β ⁺ de	ecay	1974Go32,1985	Dz05 (continued)
						$\gamma(^{20}$	² Pb) (continued)	
${\rm E_{\gamma}}^{\dagger}$	$I_{\gamma}^{\dagger @}$	E _i (level)	\mathbf{J}_i^{π}	$\mathbf{E}_f = \mathbf{J}_f^{\pi}$	Mult. [‡]	δ^{\ddagger}	α [#]	Comments
983.63 6	0.89 13	2898.76	5-	1915.12 4+	E1		0.00258 4	$\alpha(K)=0.002151 \ 30; \ \alpha(L)=0.000328 \ 5; \ \alpha(M)=7.57\times10^{-5} \ 11 \ \alpha(N)=1.915\times10^{-5} \ 27; \ \alpha(O)=3.80\times10^{-6} \ 5; \ \alpha(P)=3.92\times10^{-7} \ 5 \ \%I\gamma=0.88 \ 13 \ Mult.: \ \alpha(K)exp=0.0055 \ 14 \ (1985Dz05). \ \alpha(K)exp<0.005 \ (1974Go32)$
^x 997.9 <i>4</i> 1004.44 8	0.30 5 0.86 <i>13</i>	1965.14	4+	960.67 2+	E2		0.00660 9	α (h)=0.305 α (K)=0.00526 7; α (L)=0.001022 14; α (M)=0.0002432 34 α (N)=6.16×10 ⁻⁵ 9; α (O)=1.205×10 ⁻⁵ 17; α (P)=1.163×10 ⁻⁶ 16 %hy=0.85 13 Mult : α (K)exp=0.0065 20, α (K)exp=0.0070 17 (1985D205)
^x 1035.18 <i>10</i> ^x 1052.86 <i>13</i> ^x 1062.84 <i>18</i> 1072.59 <i>13</i>	0.5 2 0.31 5 0.14 2 0.84 13	3682.22	4-,5-	2609.58 5-	M1(+E2)	≤0.5	0.0140 9	% $I\gamma$ =0.50 20 % $I\gamma$ =0.31 5 % $I\gamma$ =0.139 20 α (K)=0.0115 8; α (L)=0.00190 12; α (M)=0.000443 27 α (N)=0.000113 7; α (O)=2.25×10 ⁻⁵ 14; α (P)=2.41×10 ⁻⁶ 16 % $I\gamma$ =0.83 13
^x 1103.63 <i>13</i> ^x 1108.7 <i>3</i> ^x 1111.82 <i>20</i> ^x 1117.4 <i>2</i>	0.38 6 0.19 6 0.24 8 0.17 3							Mult.: α(K)exp=0.012 4. α(K)exp=0.014 3 (1985Dz05). %Iγ=0.38 6 %Iγ=0.19 6 %Iγ=0.24 8 %Iγ=0.169 30
1127.45 <i>11</i>	0.32 5	2750.50	6+	1623.06 4+	(E2)		0.00528 7	$\alpha(K)=0.00425\ 6;\ \alpha(L)=0.000789\ 11;\ \alpha(M)=0.0001868\ 26$ $\alpha(N)=4.74\times10^{-5}\ 7;\ \alpha(O)=9.29\times10^{-6}\ 13;\ \alpha(P)=9.15\times10^{-7}\ 13;$ $\alpha(IPF)=4.52\times10^{-7}\ 7$ %Iy=0.32 5 Mult : $\alpha(K)$ exp=0.0094 24 (1985Dz05)
1134.33 <i>11</i>	0.21 3	2517.28	3-	1382.84 4+	E1		2.00×10 ⁻³ 3	$\alpha(K)=0.001670 \ 23; \ \alpha(L)=0.0002527 \ 35; \ \alpha(M)=5.82\times10^{-5} \ 8$ $\alpha(N)=1.473\times10^{-5} \ 21; \ \alpha(O)=2.92\times10^{-6} \ 4; \ \alpha(P)=3.04\times10^{-7} \ 4; \ \alpha(PF)=2.74\times10^{-6} \ 4$ $\%[\gamma=0.209 \ 30 \ Mult: \ \alpha(K)exp<0.0048 \ 7 \ (1985Dz05).$
x1144.27 20 x1150.71 9 x1163 5 4	0.50 8 0.40 6 0.18 3							%[y=0.50 8 %[y=0.40 6 %[y=0.179 30
1163.5 4 1164.9 4 x1173.62 17 x1192.9 3 x1107.52 16	0.16 <i>2</i> 0.15 <i>5</i> 0.10 <i>2</i> 0.20 <i>2</i>	3682.22	4-,5-	2517.28 3-				%Iy=0.179 30 %Iy=0.159 20 %Iy=0.099 20 %Iy=0.109 20
1206.25 7	0.20 5 0.58 9	3723.52	4-	2517.28 3-	M1(+E2)	≤0.3	0.01075 30	$\alpha(K)=0.00885\ 25;\ \alpha(L)=0.00145\ 4;\ \alpha(M)=0.000339\ 9$ $\alpha(N)=8.61\times10^{-5}\ 23;\ \alpha(O)=1.72\times10^{-5}\ 5;\ \alpha(P)=1.85\times10^{-6}\ 5;$

	²⁰² Bi ε + β ⁺ decay 1974Go32,1985Dz05 (continued)										
γ ⁽²⁰² Pb) (continued)											
${\rm E_{\gamma}}^{\dagger}$	$I_{\gamma}^{\dagger @}$	E _i (level)	\mathbf{J}_i^{π}	E_f J	Π_f^{π} Mult. [‡]	δ^{\ddagger}	$\alpha^{\#}$	Comments			
1211.52 10	0.22 3	3820.87	5-	2609.58 5-	M1(+E2)) ≤0.7	0.0099 10	$\begin{array}{l} \alpha(\mathrm{IPF})=7.73\times10^{-6} \ 18 \\ \%\mathrm{I}\gamma=0.58 \ 9 \\ \mathrm{Mult.: \ From } \alpha(\mathrm{K})\mathrm{exp}=0.013 \ 3. \ \alpha(\mathrm{K})\mathrm{exp}=0.015 \ 3 \\ (1985\mathrm{Dz}05). \\ \alpha(\mathrm{K})=0.0081 \ 9; \ \alpha(\mathrm{L})=0.00134 \ 13; \ \alpha(\mathrm{M})=0.000312 \ 30 \\ \alpha(\mathrm{N})=7.9\times10^{-5} \ 8; \ \alpha(\mathrm{O})=1.58\times10^{-5} \ 16; \ \alpha(\mathrm{P})=1.69\times10^{-6} \\ 18; \ \alpha(\mathrm{IPF})=8.1\times10^{-6} \ 6 \end{array}$			
1224.24 10	1.57 23	2185.06	3+	960.67 2+	M1+E2	1.0 +8-4	0.0076 <i>16</i>	%I γ =0.218 30 Mult.: From α (K)exp=0.011 3 (1985Dz05). α (K)=0.0062 13; α (L)=0.00105 20; α (M)=0.00024 5 α (N)=6.2×10 ⁻⁵ 12; α (O)=1.23×10 ⁻⁵ 24; α (P)=1.30×10 ⁻⁶ 28; α (IPF)=8.5×10 ⁻⁶ 13 %I γ =1.56 23			
1226.7 4	0.45 15	2609.58	5-	1382.84 4+	E1+M2	0.51 +20-22	0.0066 <i>30</i>	Mult.: α (K)exp=0.0061 <i>13</i> (1985Dz05). α (K)=0.0054 <i>24</i> ; α (L)=9.E-4 <i>4</i> ; α (M)=2.2×10 ⁻⁴ <i>10</i> α (N)=5.5×10 ⁻⁵ <i>27</i> ; α (O)=1.1×10 ⁻⁵ <i>5</i> ; α (P)=1.2×10 ⁻⁶ <i>6</i> ; α (IPF)=1.97×10 ⁻⁵ <i>28</i> %I γ =0.45 <i>15</i>			
^x 1236.08 <i>10</i> 1245.48 <i>5</i>	0.59 <i>9</i> 2.81 <i>17</i>	3285.79	4-	2040.32 5-	M1(+E2)) ≤0.28	0.00995 25	Mult.: $\alpha(K)\exp=0.0053\ 24\ (1985Dz05)$. $\%I\gamma=0.59\ 9$ $\alpha(K)=0.00818\ 21;\ \alpha(L)=0.001343\ 33;\ \alpha(M)=0.000313\ 8$ $\alpha(N)=7.95\times10^{-5}\ 19;\ \alpha(O)=1.59\times10^{-5}\ 4;\ \alpha(P)=1.71\times10^{-6}$ $4;\ \alpha(IPF)=1.471\times10^{-5}\ 31$ $\%I\gamma=2.79\ 17$ Mult.: $\alpha(K)\exp=0.0099\ 20.\ \alpha(K)\exp=0.0107\ 12,$ $\alpha(L)\exp=0.0021\ 4\ (1985Dz05)$			
^x 1291.2 <i>3</i> 1295.35 <i>13</i>	0.10 2 0.20 <i>3</i>	3682.22	4-,5-	2386.82 5-	[M1]		0.00920 13	$ \begin{aligned} &\alpha(L) exp = 0.0021 \ 4 \ (1985) D205). \\ &\% I \gamma = 0.009 \ 20 \\ &\alpha(K) = 0.00756 \ 11; \ \alpha(L) = 0.001238 \ 17; \ \alpha(M) = 0.000288 \ 4 \\ &\alpha(N) = 7.32 \times 10^{-5} \ 10; \ \alpha(O) = 1.462 \times 10^{-5} \ 20; \\ &\alpha(P) = 1.575 \times 10^{-6} \ 22; \ \alpha(IPF) = 2.63 \times 10^{-5} \ 4 \\ &\% I \gamma = 0.199 \ 30 \end{aligned} $			
^x 1313.59 <i>15</i> 1336.48 <i>20</i> ^x 1350.85 <i>8</i>	0.18 <i>3</i> 0.26 <i>4</i> 0.40 <i>6</i>	3723.52	4-	2386.82 5-	M1+E2	1.8 8	0.0050 12	% $i_{\gamma}=0.179 \ 30$ $\alpha(K)=0.0040 \ 10; \ \alpha(L)=0.00069 \ 16; \ \alpha(M)=0.00016 \ 4$ $\alpha(N)=4.1\times10^{-5} \ 9; \ \alpha(O)=8.1\times10^{-6} \ 19; \ \alpha(P)=8.4\times10^{-7} \ 21; \ \alpha(PF)=2.6\times10^{-5} \ 4$ $\Re(PF)=2.6\times10^{-5} \ 4$ Mult.: $\alpha(K)\exp=0.004 \ 10 \ (1985Dz05).$ $\Re(V=0.40 \ 6$			
x1358.55 16 1363.14 20	0.40 <i>6</i> 0.20 <i>3</i>	3723.52	4-	2360.46 4-	,5 ⁻ M1(+E2)	≤0.8	0.0073 9	% $I_{\gamma}=0.40~6$ $\alpha(K)=0.0059~7; \alpha(L)=0.00098~11; \alpha(M)=0.000228~25$			

From ENSDF

 ${}^{202}_{82}{\rm Pb}_{120}$ -10

					²⁰² Bi	ε + β ⁺ dec	ay 1974Go32	2,1985Dz05 (continued)
							$\gamma(^{202}\text{Pb})$ (cont	tinued)
E_{γ}^{\dagger}	I_{γ}^{\dagger}	E _i (level)	\mathbf{J}_i^{π}	E_f	\mathbf{J}_f^{π}	Mult. [‡]	α [#]	Comments
1367.5 4	0.5 2	2750.50	6+	1382.84	4+	E2	0.00370 5	$\begin{aligned} \alpha(\mathrm{N}) &= 5.8 \times 10^{-5} \ 6; \ \alpha(\mathrm{O}) = 1.15 \times 10^{-5} \ 13; \ \alpha(\mathrm{P}) = 1.23 \times 10^{-6} \ 15; \\ \alpha(\mathrm{IPF}) &= 4.4 \times 10^{-5} \ 4 \\ \% \mathrm{I}\gamma = 0.199 \ 30 \\ \mathrm{Mult.: \ From \ } \alpha(\mathrm{K}) \mathrm{exp} = 0.0080 \ 23 \ (1985\mathrm{Dz}05). \\ \alpha(\mathrm{K}) &= 0.00299 \ 4; \ \alpha(\mathrm{L}) = 0.000522 \ 7; \ \alpha(\mathrm{M}) = 0.0001228 \ 17 \\ \alpha(\mathrm{N}) &= 3.11 \times 10^{-5} \ 4; \ \alpha(\mathrm{O}) = 6.14 \times 10^{-6} \ 9; \ \alpha(\mathrm{P}) = 6.21 \times 10^{-7} \ 9; \\ \alpha(\mathrm{IPF}) &= 2.83 \times 10^{-5} \ 4 \\ \% \mathrm{I}\gamma = 0.50 \ 20 \\ \mathrm{Mult.: \ } \alpha(\mathrm{K}) \mathrm{exp} = 0.0034 \ 16 \ (1985\mathrm{Dz}05). \end{aligned}$
^x 1375.43 <i>16</i>	0.16 2							% $I\gamma$ =0.159 20
1382.8 5	3.3×10 ⁻⁵ 5	1382.84	4+	0.0	0+	E4	0.01446 20	α (K)=0.01072 <i>15</i> ; α (L)=0.00283 <i>4</i> ; α (M)=0.000697 <i>10</i> α (N)=0.0001775 <i>25</i> ; α (O)=3.44×10 ⁻⁵ <i>5</i> ; α (P)=3.21×10 ⁻⁶ <i>5</i> %Iy=3.3×10 ⁻⁵ <i>5</i>
x1420.72 10 x1433.44 15 x1439.17 21 x1487.10 13 x1495.08 11 x1512.8 6	0.60 9 0.29 4 0.16 2 0.22 3 0.16 2 0.25 8							$\%$ I γ =0.60 9 %I γ =0.29 4 %I γ =0.159 20 %I γ =0.218 30 %I γ =0.159 20 %I γ =0.25 8
1515.89 20 *1523.68 20	0.73 11	2898.76	5-	1382.84	4+	E1	1.39×10 ⁻³ 2	$\begin{aligned} \alpha(\mathbf{K}) = 0.001016 \ 14; \ \alpha(\mathbf{L}) = 0.0001515 \ 21; \ \alpha(\mathbf{M}) = 3.49 \times 10^{-5} \ 5 \\ \alpha(\mathbf{N}) = 8.82 \times 10^{-6} \ 12; \ \alpha(\mathbf{O}) = 1.755 \times 10^{-6} \ 25; \ \alpha(\mathbf{P}) = 1.847 \times 10^{-7} \ 26; \\ \alpha(\mathbf{IPF}) = 0.0001810 \ 25 \\ \% \mathbf{I}\gamma = 0.73 \ 11 \\ \mathbf{Mult.:} \ \alpha(\mathbf{K}) \exp \leq 0.0014 \ (1985 \mathrm{D} z 05). \end{aligned}$
^x 1526.9 3	0.17 6							$\%$ I γ =0.17 6
1556.69 7	1.9 <i>3</i>	2517.28	3-	960.67	2+	E1	1.37×10 ⁻³ 2	$\begin{aligned} \alpha(\text{K}) = 0.000971 \ 14; \ \alpha(\text{L}) = 0.0001448 \ 20; \ \alpha(\text{M}) = 3.33 \times 10^{-5} \ 5 \\ \alpha(\text{N}) = 8.43 \times 10^{-6} \ 12; \ \alpha(\text{O}) = 1.677 \times 10^{-6} \ 23; \ \alpha(\text{P}) = 1.766 \times 10^{-7} \ 25; \\ \alpha(\text{IPF}) = 0.0002091 \ 29 \\ \% I\gamma = 1.89 \ 30 \\ \text{Mult.:} \ \alpha(\text{K}) \exp = 0.0012 \ 3 \ (1985\text{Dz}05). \end{aligned}$
^x 1563.35 <i>17</i> 1584.9 <i>5</i>	0.18 <i>3</i> 0.7 <i>2</i>	2967.61	4-,5-	1382.84	4+	(E1)	1.35×10 ⁻³ 2	%I γ =0.179 30 α (K)=0.000943 13; α (L)=0.0001404 20; α (M)=3.23×10 ⁻⁵ 5 α (N)=8.17×10 ⁻⁶ 11; α (O)=1.627×10 ⁻⁶ 23; α (P)=1.714×10 ⁻⁷ 24; α (IPF)=0.0002290 32 %I γ =0.70 20 Mult.: α (K)exp=0.0037 13 (1985Dz05).

From ENSDF

 $^{202}_{82} \mathrm{Pb}_{120} \text{--} 11$

						$\gamma(^{202}\text{Pb})$	(continued)	
E_{γ}^{\dagger}	$I_{\gamma}^{\dagger @}$	E _i (level)	\mathbf{J}_i^π	$\mathbf{E}_f = \mathbf{J}_f^{\pi}$	Mult. [‡]	δ^{\ddagger}	α #	Comments
1584.9 <i>5</i>	0.7 2	3820.87	5-	2235.42 6+	E1+M2	0.63 22	0.0047 16	$ \begin{array}{l} \alpha(\mathrm{K}) = 0.0037 \ 13; \ \alpha(\mathrm{L}) = 6.2 \times 10^{-4} \ 24; \ \alpha(\mathrm{M}) = 1.5 \times 10^{-4} \ 6 \\ \alpha(\mathrm{N}) = 3.7 \times 10^{-5} \ 14; \ \alpha(\mathrm{O}) = 7.4 \times 10^{-6} \ 28; \ \alpha(\mathrm{P}) = 7.9 \times 10^{-7} \ 30; \\ \alpha(\mathrm{IPF}) = 0.000180 \ 24 \\ \% \mathrm{I}\gamma = 0.70 \ 20 \\ \mathrm{M} \ 10^{-1} $
x1615.25 <i>15</i> x1619.65 <i>15</i> x1623.34 <i>15</i> 1635 55 <i>17</i>	0.16 2 0.23 <i>3</i> 0.18 <i>3</i> 0.17 <i>3</i>	3820 87	5-	2185.06 3+	[M2]		0.01204.17	Mult.: $\alpha(K)\exp=0.003773$ (1985Dz05). %Iy=0.15920 %Iy=0.22830 %Iy=0.17930 $\alpha(K)=0.0097614$; $\alpha(L)=0.00169124$; $\alpha(M)=0.0003976$
1035.55 17	0.17 5	3620.67	5	2185.00 5	[1412]		0.01204 17	$\alpha(\text{N})=0.00976\ 14,\ \alpha(\text{L})=0.001691\ 24,\ \alpha(\text{M})=0.000397\ 6$ $\alpha(\text{N})=0.0001010\ 14;\ \alpha(\text{O})=2.014\times10^{-5}\ 28;$ $\alpha(\text{P})=2.154\times10^{-6}\ 30;\ \alpha(\text{IPF})=7.18\times10^{-5}\ 10$ %Iy=0.169\ 30
x1715.94 20 x1715.94 20 x1730.9 3 x1754.1 4	0.14 2 0.08 2 0.3 1 0.18 6							$\%_{I}\gamma=0.139\ 20$ $\%_{I}\gamma=0.079\ 20$ $\%_{I}\gamma=0.30\ 10$ $\%_{I}\gamma=0.18\ 6$ $\%_{I}\gamma=0.27\ 5$
1780.53 8	0.57 5	3820.87	5-	2040.32 5-	M1(+E2)	≤0.7	0.00405 <i>33</i>	$\alpha(\text{K})=0.0313\ 25;\ \alpha(\text{L})=0.00051\ 4;\ \alpha(\text{M})=0.000118\ 9$ $\alpha(\text{N})=3.00\times10^{-5}\ 24;\ \alpha(\text{O})=6.0\times10^{-6}\ 5;\ \alpha(\text{P})=6.4\times10^{-7}\ 5;$ $\alpha(\text{IPF})=0.000261\ 19$ %Iy=0.68 10 Mult: $\alpha(\text{K})=0.0040\ 0,\ (1025\text{D}=05)$
(1790.55 <i>18</i> (1807.95 <i>10</i> (1813.7 <i>2</i> (1833.25 <i>13</i>)	0.26 <i>4</i> 0.40 <i>6</i> 0.15 <i>5</i> 0.28 <i>4</i>							$\% I\gamma = 0.26 4$ $\% I\gamma = 0.40 6$ $\% I\gamma = 0.15 5$ $\% I\gamma = 0.28 4$ $\% I\gamma = 0.28 4$
1839.63 \$1848.7314 \$1858.8015 \$1882.2220 \$1956.9716	0.07 1 0.20 3 0.15 2 0.28 4 0.36 5							$\%_{I}\gamma=0.070\ 70$ $\%_{I}\gamma=0.199\ 30$ $\%_{I}\gamma=0.149\ 20$ $\%_{I}\gamma=0.28\ 4$ $\%_{I}\gamma=0.36\ 5$
x 1989.75 20 x 1998.36 20 x 2003.13 20 x 2016.5 3	0.21 3 0.11 2 0.08 2 0.08 2							$\%_{1\gamma=0.209} \frac{30}{30}$ $\%_{1\gamma=0.109} \frac{20}{20}$ $\%_{1\gamma=0.079} \frac{20}{20}$ $\%_{1\gamma=0.079} \frac{20}{20}$
2059.5 3	0.36 5	3682.22	4-,5-	1623.06 4+	[E1]		1.30×10 ⁻³ 2	$\begin{aligned} &\alpha(\mathbf{K}) = 0.000612 \ 9; \ \alpha(\mathbf{L}) = 9.03 \times 10^{-5} \ 13; \ \alpha(\mathbf{M}) = 2.075 \times 10^{-5} \\ & 29 \\ &\alpha(\mathbf{N}) = 5.25 \times 10^{-6} \ 7; \ \alpha(\mathbf{O}) = 1.047 \times 10^{-6} \ 15; \\ &\alpha(\mathbf{P}) = 1.111 \times 10^{-7} \ 16; \ \alpha(\mathbf{IPF}) = 0.000572 \ 8 \\ &\%_{\mathbf{I}} \gamma = 0.36 \ 5 \end{aligned}$

From ENSDF

					²⁰² Bi ε+	β^+ decay 19	74Go32,1985Dz05 (continued)
						γ (²⁰² P	b) (continued)
${\rm E_{\gamma}}^{\dagger}$	$I_{\gamma}^{\dagger @}$	E _i (level)	\mathbf{J}_i^{π}	$\mathbf{E}_f = \mathbf{J}_f^{\pi}$	Mult. [‡]	α [#]	Comments
2100.46 25	0.20 3	3723.52	4-	1623.06 4+	[E1]	1.31×10 ⁻³ 2	$ \begin{array}{l} \alpha(\mathrm{K}) = 0.000593 \ 8; \ \alpha(\mathrm{L}) = 8.74 \times 10^{-5} \ 12; \ \alpha(\mathrm{M}) = 2.008 \times 10^{-5} \ 28 \\ \alpha(\mathrm{N}) = 5.08 \times 10^{-6} \ 7; \ \alpha(\mathrm{O}) = 1.013 \times 10^{-6} \ 14; \ \alpha(\mathrm{P}) = 1.076 \times 10^{-7} \ 15; \ \alpha(\mathrm{IPF}) = 0.000600 \\ 8 \\ \% \mathrm{I}\gamma = 0.199 \ 30 \end{array} $
^x 2153.21 <i>14</i> 2198.03 <i>25</i>	0.20 <i>3</i> 0.10 <i>2</i>	3820.87	5-	1623.06 4+	[E1]	1.32×10 ⁻³ 2	$\%_{1\gamma}^{\prime}=0.199\ 30$ $\alpha(K)=0.000551\ 8;\ \alpha(L)=8.11\times10^{-5}\ 11;\ \alpha(M)=1.863\times10^{-5}\ 26$ $\alpha(N)=4.72\times10^{-6}\ 7;\ \alpha(O)=9.40\times10^{-7}\ 13;\ \alpha(P)=1.000\times10^{-7}\ 14;\ \alpha(IPF)=0.000666\ 9$ $\%_{1\gamma}^{\prime}=0.099\ 20$
x2277.28 15 x2286.4 3 x2322.55 13	0.16 2 0.07 <i>1</i> 0.22 <i>3</i>					2	$\% I_{\gamma} = 0.159 \ 20$ $\% I_{\gamma} = 0.070 \ 10$ $\% I_{\gamma} = 0.218 \ 30$
2340.5 15	0.20 7	3723.52	4-	1382.84 4+	[E1]	1.35×10^{-3} 2	$\alpha(\text{K})=0.000498\ 7;\ \alpha(\text{L})=7.32\times10^{-5}\ 10;\ \alpha(\text{M})=1.681\times10^{-5}\ 24$ $\alpha(\text{N})=4.25\times10^{-6}\ 6;\ \alpha(\text{O})=8.49\times10^{-7}\ 12;\ \alpha(\text{P})=9.04\times10^{-8}\ 13;\ \alpha(\text{IPF})=0.000761\ 11$ %Iv=0.20.7
^x 2435.3 5 ^x 2559.6 5 ^x 2640.8 4 ^x 2660.86 13 ^x 2685.1 6 ^x 2734.7 3 ^x 2779.64 25 ^x 2784.44 22 ^x 2868.63 23 ^x 2945.0 3 ^x 2966.92 20 ^x 3058.7 4 ^x 3138.9 4 ^x 3210.77 15 ^x 3217.2 4 ^x 3236.7 4 ^x 3236.7 4 ^x 3266.7 5 ^x 3316.54 16 ^x 3322.23 20 ^x 359.9 5 ^x 3406.6 4 ^x 3408.6 5	0.00 <i>I</i> 0.07 <i>I</i> 0.11 <i>2</i> 0.04 <i>I</i> 0.04 <i>I</i> 0.04 <i>I</i> 0.04 <i>I</i> 0.04 <i>I</i> 0.06 <i>I</i> 0.02 <i>I</i> 0.02 <i>I</i> 0.03 <i>I</i> 0.08 <i>2</i> 0.03 <i>I</i> 0.08 <i>2</i> 0.023 <i>3</i> 0.024 <i>A</i> 0.10 <i>2</i> 0.024 <i>A</i> 0.024 <i>A</i> 0.025 <i>A</i> 0.02						$\%_{1}y=0.000 10$ $\%_{1}y=0.109 20$ $\%_{1}y=0.119 20$ $\%_{1}y=0.040 10$ $\%_{1}y=0.040 10$ $\%_{1}y=0.040 10$ $\%_{1}y=0.040 10$ $\%_{1}y=0.040 10$ $\%_{1}y=0.040 10$ $\%_{1}y=0.070 10$ $\%_{1}y=0.040 10$ $\%_{1}y=0.024 4$ $\%_{1}y=0.079 20$ $\%_{1}y=0.079 20$ $\%_{1}y=0.079 20$ $\%_{1}y=0.024 30$ $\%_{1}y=0.079 20$ $\%_{1}y=0.079 20$ $\%_{1}y=0.024 4$ $\%_{1}y=0.079 20$ $\%_{1}y=0.024 30$ $\%_{1}y=0.024 4$
*3359.9 5 *3406.6 4 *3498.6 5 *3520.73 25	0.023 3 0.024 4 0.10 2 0.02 1						$\%_{1}\gamma=0.0228 30$ $\%_{1}\gamma=0.024 4$ $\%_{1}\gamma=0.099 20$ $\%_{1}\gamma=0.020 10$

From ENSDF

 $^{202}_{82} \text{Pb}_{120}\text{--}13$

γ (²⁰²Pb) (continued)

[†] From 1974Go32, unless otherwise stated. [‡] From $\alpha(K)exp$, $\alpha(L)exp$ and subshell ratios in 1974Go32 and 1985Dz05, unless otherwise stated. δ values were determined using the briccmixing code.

[#] Additional information 1.

14

[@] For absolute intensity per 100 decays, multiply by 0.99285 *10*.

 $x \gamma$ ray not placed in level scheme.

 $^{202}_{\ 82} \mathrm{Pb}_{120}$

²⁰²Bi ε decay 1974Go32,1985Dz05

