9 Be(208 Pb,X γ) 2011St21,2014Ku23,2014Mo15

Type Author Citation Literature Cutoff Date
Full Evaluation F. G. Kondev NDS 196,342 (2024) 1-Sep-2023

- 2011St21: 202 Ir produced and identified in 9 Be(208 Pb,x), E=1 GeV/nucleon from the UNILAC and SIS-18 accelerator complex at GSI. Target thickness=2.526 g/cm², backed by a 93 Nb foil of thickness=0.223 g/cm². Fragments identified by the Fragment Recoil Separator (FRS), slowed in Al degraders and stopped in a plastic catcher that was surrounded by the RISING γ -ray spectrometer. Measured E γ , I γ (delayed), γ (t).
- 2014Ku23, 2007KuZZ: ²⁰²Ir produced and identified in ⁹Be(²⁰⁸Pb,x), E=1 GeV/nucleon from the UNILAC and SIS-18 accelerator complex at GSI. Fragment Recoil Separator (FRS) was used to separate and identify the ²⁰²Ir residues. The ²⁰²Ir nuclei were implanted into an array of four double-sided silicon strip detectors with a surface of 25 cm², 1 mm thickness. The half-life was deduced from position-time correlations between the implanted fragments and the subsequent β decay.
- 2014Mo15: 202 Ir produced and identified in 9 Be(208 Pb,x), E=1 GeV/nucleon from the UNILAC and SIS-18 accelerator complex at GSI. 9 Be target of thickness 2.5 g/cm² was used. Reaction products were separated and identified by the Fragment Recoil Separator (FRS). The recoils were stopped in the RISING active stopper. Measured (ion) $\beta\gamma$, $\beta\gamma$ (ion) correlations, and half-lives using RISING array for γ rays, and Si detector arrays for particle detection.

²⁰²Ir Levels

E(level) J^{π} $T_{1/2}$ Comments

0.0 $(1^{-},2^{-})$ 13 s 3 J^{π} , $T_{1/2}$: From Adopted Levels.

≈2594 J^{π} , $J_{1/2}$: From Adopted Levels. $T_{1/2}$: From 655.9 γ (t)+737.2 γ (t)+889.2 γ (t) in 2011St21.

Experimental isomeric state population ratio=0.7% +2-3.

 γ (²⁰²Ir)

E_{γ}^{\dagger}	I_{γ}^{\dagger}	E_i (level)
^x 311.5 [‡] 5	41 <i>13</i>	
^x 655.9 [‡] 5	54 17	
$x737.2^{\ddagger} 5$	100 29	
$x_{889.2} = 5$	51 <i>17</i>	
^x 967.6 [‡] 5	44 15	

[†] From 2011St21. Uncertainty of $\Delta E \gamma = 0.5$ keV was assigned in consultation with Zs. Podolyak (USurrey).

 $^{^{\}ddagger}$ y ray deexcites the 3.4- μ s isomer, but the decay scheme is not known.

 $^{^{}x}$ γ ray not placed in level scheme.