²⁰²Po ε + β ⁺ decay 1986Va31

History						
Туре	Author	Citation	Literature Cutoff Date			
Full Evaluation	F. G. Kondev	NDS 196,342 (2024)	1-Sep-2023			

Parent: ²⁰²Po: E=0.0; $J^{\pi}=0^+$; $T_{1/2}=44.5 \text{ min } 4$; $Q(\varepsilon)=2809 \ 16$; $\%\varepsilon+\%\beta^+$ decay=98.08 7

1986Va31: ²⁰²Po production: spallation reactions; target: metallic thorium; beam: E(p)=660 MeV; ²⁰²Po mass separated from other Po isotopes; detectors: Ge(Li), Si(Li), β magnetic spectrometer in conjunction with Ge(Li) for γ -ce coincidences.

Others (same authors): 1971KuZK, 1977VaYV, 1983KuZR, 1984KuZV. Others: 1970DaZM, 1970Jo26,

²⁰²Bi Levels

E(level) [†]	J^{π}	T _{1/2} †
0.0	5+	1.71 h 4
41.30 9	(4^{+})	

[†] From Adopted Levels.

$\gamma(^{202}\text{Bi})$

Iγ normalization: Weighted average of 0.47 *6* (1970Jo26) and 0.46 *5* (1986Va31); Other: 0.59 7 (1971KuZK). K α_2 x ray=77 5, K α_1 x ray=130 5, K β_1 x ray=44.5 25, K β_2 x ray=15.4 7 (1986Va31).

E_{γ}^{\dagger}	$I_{\gamma}^{\dagger b}$	E _i (level)	\mathbf{J}_i^{π}	$\mathbf{E}_f \mathbf{J}_f^{\pi}$	Mult.	α^{c}	Comments
^x 32.0 [‡] 5	≈2.5 [‡]						
$x_{34} 6^{\ddagger} 5$	0.156 [‡] 25						
x39.4 4	0.110 15						$\alpha(L1) \exp = 20.8$
41.30 9	5.98 25	41.30	(4 ⁺)	0.0 5+	M1	25.4	α(L)=19.4 3; α(M)=4.56 7; α(N+)=1.435 23 α(N)=1.168 18; α(O)=0.239 4; α(P)=0.0284 5 Mult.: L1/L2/L3/M/N=100/9.7 14/1.05 23/26 3/8.4 12. Eγ: Placement from Eα differences in 206At α decay (1981Va29).
x47.80 <i>6</i>	0.24 3						$\alpha(L1)\exp=10\ 2;\ \alpha(L2)\exp\leq1.7;\ \alpha(L3)\exp\leq0.8;\ \alpha(M)\exp=3.4\ 7.$
^x 49.75 12	0.244 10						α (L2)exp \leq 2.5; α (M)exp=4.1 16.
^x 65.17 5	3.85 16						α (L2)exp=19 2; α (L3)exp=16.6 17; α (M)exp=2.5 6.
^x 67.25 4	0.43 <i>3</i>						α (M)exp ≤ 2.33 .
^x 70.70 9	1.76 10						α (L1)exp=3.8 5; α (L2)exp \leq 0.51; α (L3)exp \leq 0.34; α (M)exp=0.51 16.
^x 93.5 3	0.10 3						
^x 104.67 4	0.39 4						α (K)exp=6.2 <i>19</i> ; α (L3)exp≤0.26.
^x 116.62 4	0.47 2						α (L3)exp \leq 0.32; α (M)exp \leq 0.32.
^x 120.96 5	0.68 <i>3</i>						α (K)exp=4.9 8; α (L1+L2)exp=0.94 15.
^x 124.04 3	1.44 6						α (K)exp=4.2 5; α (L3)exp≤0.139.
^x 130.8 [‡] 5	0.12 [‡] 4						
^x 137.18 9	0.65 7						α (K)exp=4.2 8.
^x 144.20 25	0.13 <i>3</i>						
^x 146.00 4	0.568 24						α (K)exp=2.5 3.
^x 152.76 3	1.43 12						α (L3)exp \leq 0.049.
^x 165.77 3	17.0 7						α (K)exp=2.6 3; α (L1+L2)exp=0.50 13.
^x 185.36 8	0.94 8						α (K)exp=1.31 22; α (L1+L2)exp=0.29 8.
^x 190.27 4	0.63 4						α (K)exp=1.26 21.
x213.732 17	6.5 3						α (K)exp=1.20 21; α (L1+L2)exp=0.22 6.

Continued on next page (footnotes at end of table)

²⁰²Po ε + β ⁺ decay **1986Va31** (continued)

$\gamma(^{202}\text{Bi})$ (continued)

E_{γ}^{\dagger}	$I_{\gamma}^{\dagger b}$	E _i (level)	Comments
^x 215.908 15	3.10 13		$\alpha(K) \exp [1.0 2.]$
^x 221.6 5	0.33 3		
^x 251.75 [#] 3	2.93 16		
^x 268.16 ^a 7	1.84 20		$\alpha(K)\exp=0.60$ 9; $\alpha(L)\exp=0.098$ 24.
^x 280.05 6	1.59 9		α (K)exp=0.48 6; α (L)exp=0.08 2.
^x 290.11 21	0.74 9		α (K)exp=0.43 16.
x292.50 7	1.33 11		$\alpha(K) \exp = 0.47 \ 8.$
*307.3 5	0.65 8		
x316.14 4	28.0 15		α (K)exp=0.34 5; α (L)exp=0.052 9; α (M)exp=0.014 3; α (N)exp \approx 0.0046.
^x 325.4 [‡] 5	$0.60^{\ddagger} 20$		
^x 336.87 4	3.80 16		α (K)exp=0.27 3; α (L)exp \approx 0.053.
*428.09 25	2.96 12		α (K)exp=0.09 2.
^x 445.2 ⁺ 8	0.50+ 15		
^x 451.6 ⁴ 10	0.50^{4} 15		
^x 458.502 ^u 25	7.2 3		α (K)exp=0.111 <i>15</i> ; α (L)exp=0.021 <i>6</i> ; α (M)exp=0.005 <i>1</i> .
^x 483.23 5	1.80 15		α (K)exp=0.122 16; α (L)exp=0.020 3.
^x 506.46 ^{cc} 3	8.0 3		α (K)exp=0.096 14.
^x 539.8 ⁺ 8	0.50+ 10		
x551.52 3	3.14 20		$\alpha(\mathbf{K}) \exp[-0.070 \ 8.$
^x 508.12.5	1.00 4		$\alpha(K) \exp = 0.054$ /.
x609 5 5	4.5 5		$\alpha(K)\exp=0.0005 \ 12.$
$x_{625,20} \# 4$	2 10 22		$a(\mathbf{K}) \exp -0.053.12$
023.29 4	5.1023		$u(\mathbf{K})\exp[-0.034^{-7}, u(\mathbf{L})\exp[-0.0003, u(\mathbf{K})]]$
x643.86.4	693		$\alpha(K) = 0.052 \text{ fr } \alpha(M) = 0.0029$
^x 662.6.3	1.80.23		$u(\mathbf{K})cxp = 0.052, 0, u(\mathbf{M})cxp \sim 0.0029.$
x672.2 5	1.15 14		
^x 679.6 6	1.40 17		$\alpha(K)\exp\approx 0.043.$
^x 684.6 <i>3</i>	2.40 22		$\alpha(\mathbf{K})\exp\approx 0.050.$
^x 688.803 ^{#@} 25	100 4		α (K)exp=0.105 9; α (L)exp=0.022 2; α (M)exp=0.0050 8; α (N)exp=0.0014 3.
^x 712.15 [#] 3	9.0 4		$\alpha(K)\exp=0.0053$ 9.
^x 717.19 [@] 6	11.6 5		$\alpha(K) \exp = 0.0037$ 7.
$x727.1^{\ddagger} 6$	0.50^{\ddagger} 11		
^x 731.6 4	0.90 11		
^x 749.38 7	1.30 26		α (K)exp ≤ 0.023 5.
^x 785.64 [#] 6	2.80 20		<i>α</i> (K)exp≤0.0071 5.
$x790.48^{@}5$	13.5 6		$\alpha(K) \exp[-0.033 3]$.
^x 803.84 17	0.81 18		
^x 809.04 ^a 6	2.80 17		α (K)exp=0.029 5; α (L)exp=0.0054 11.
^x 815.5 [‡] 10	0.55 [‡] 15		
^x 828.40 4	3.40 23		<i>α</i> (K)exp≤0.0088.
^x 858.0 6	1.07 11		
^x 872.5 ⁺ 6	0.55 [∓] 12		
^x 876.66 [#] 5	3.12 15		<i>α</i> (K)exp≤0.0080.
^x 891.5 [‡] 10	0.35 [‡] 7		
^x 935.83 7	2.00 16		$\alpha(K) \exp = 0.020 \ 4.$
^x 949.5 [‡] 10	0.85 [‡] 15		
^x 954.8 [‡] 5	1.0 [‡] 3		
^x 967.5 [‡] 10	0.50 [‡] 15		

$^{202}\mathbf{Po}\ \varepsilon\mathbf{+}\beta^{+}$ decay 1986Va31 (continued)

$\gamma(^{202}\text{Bi})$ (continued)

E_{γ}^{\dagger}	$I_{\gamma}^{\dagger b}$	E_i (level)	Con	nments
^x 973.84 5	9.4 4		α (K)exp=0.0120 <i>13</i> .	
^x 994.36 12	1.78 10		$\alpha(K) \exp = 0.0056 \ 12.$	
^x 999.65 4	2.13 12		α (K)exp=0.012 3.	
^x 1046.0 [‡] 10	0.30 [‡] 10			
^x 1060.59 4	2.55 15		α (K)exp=0.0125 21; α (L)exp=0.0024 5.	
^x 1078.19 ^{&} 6	2.20 15		α (K)exp=0.018 5.	
^x 1104.2 3	0.55 16		α (K)exp=0.013 5.	
^x 1121.04 ^a 5	2.28 17		α (K)exp=0.0132 24.	
^x 1169.03 ^{&} 6	3.80 16		α (K)exp=0.0124 <i>19</i> .	
^x 1173.8 5	0.27 7		α (K)exp \approx 0.011.	
^x 1183.8 3	0.41 5		$\alpha(\mathbf{K}) \exp \approx 0.012.$	
*1215.46 8	3.25 20		$\alpha(\mathbf{K}) \exp = 0.0108 \ 14.$	
x1241.0+ 10	0.30+ 7			
^x 1250.0 ⁺ 10	0.25+ 15			
^x 1263.6 [‡] 7	0.40 [‡] 10			
^x 1288.90 14	1.25 7		$\alpha(K) \exp = 0.0094 \ 14.$	
^x 1301.5 [‡] 10	0.23 [‡] 5			
^x 1305.5 [‡] 10	$0.22^{\ddagger} 5$			
^x 1318.5 [‡] 10	0.25 [‡] 10			
^x 1327.0 [‡] 5	0.26 [‡] 4			
^x 1335.0 5	0.45 8			
^x 1371.0 [‡] 10	0.18 [‡] 5			
^x 1382.5 10	0.40 10		$\alpha(K)\exp\approx 0.0075.$	
x1385.5 10	0.40 10		$\alpha(K) \exp \leq 0.0038.$	
*1391.74	0.55 /		$\alpha(\mathbf{K})\exp=0.0062$ 18.	
^x 1401.0 ⁺ 10	0.20+ 8			
^x 1416.0 ⁺ 10	0.20+ 6			
^x 1475.6 [‡] 7	0.30 [‡] 8			
^x 1499.8 [‡] 7	0.19 [‡] 4			
^x 1508.0 ⁴ 10	0.25 [‡] 5			
×1520.5 10	0.36 4		α (K)exp=0.0069 18.	
~1545.7 3	0.60 5		α (K)exp \approx 0.0067.	
1348.8 J X1650 2 8	0.40 /		$\alpha(\mathbf{K}) \exp \sim 0.00005.$	
1030.2 0	0.32 /		$u(\mathbf{K}) \exp[-0.0072/24]$	

[†] From 1986Va31, unless otherwise stated. [‡] Tentatively assigned to 202 Po ε decay in 1986Va31. [#] In coincidence with the 41.30-keV L₁ line in 1986Va31. [@] In coincidence with the 65.17-keV L₂ line in 1986Va31.

[&] In coincidence with the 165.77-keV \tilde{K} line in 1986Va31.

^a In coincidence with the 213.732-keV K line in 1986Va31.

^b For absolute intensity per 100 decays, multiply by 0.45 4.

^c Total theoretical internal conversion coefficients, calculated using the BrIcc code (2008Ki07) with Frozen orbital approximation based on γ -ray energies, assigned multipolarities, and mixing ratios, unless otherwise specified.

 $x \gamma$ ray not placed in level scheme.

²⁰²Po ε decay 1986Va31

Decay Scheme

Intensities: I_{γ} per 100 parent decays

