²⁰³Tl(*α*,5nγ) **1981Th03**

History							
Туре	Author	Citation	Literature Cutoff Date				
Full Evaluation	F. G. Kondev	NDS 196,342 (2024)	1-Sep-2023				

1981Th03: $E(\alpha)=55,57,62,66,70$ MeV, pulsed with 35 ns, 141 ns and 25 μ s repetition time; target: ²⁰³Tl (87% enriched); detectors: 2 Ge(Li), 1 LEPS, iron-free orange spectrometer; measured: excitation function, $\gamma\gamma$, $\gamma(\theta)$, $\gamma(t)$, $\gamma\gamma(t)(t)$, ce. Others: 1980Kl06, 1982Hu07.

²⁰²Bi Levels

E(level) [†]	$J^{\pi \ddagger}$	T _{1/2} ‡	Comments
0.0 7 5	5 ⁺ (7 ⁺)	1.71 h <i>4</i>	J^{π} , $T_{1/2}$: From Adopted Levels. Additional information 1. E(level): From Adopted Levels.
605 <i>5</i> 605+x	(8 ⁻) 10 ⁻	3.04 µs 6	E(level): From Adopted Levels. $\mu = +2.55 \ 3$ Additional information 2. E(level): x<40 keV (1981Th03). T _{1/2} : From 597.8 γ (t) (1981Th03). Configuration= π (h ⁺¹ _{9/2}) $\otimes \nu$ (i ⁻¹ _{13/2}). μ : From g=0.255 $\ 3$ (1982Hu07); Other: g=0.236 23 (1980K106); both values using the time dependent perturbed angular distribution technique. The expected value for a pure configuration= π (h ⁺¹ _{9/2}) $\otimes \nu$ (i ⁻¹ _{13/2}) is μ =+2.64.
1229.12+x 8 1471.29+x 8 1793.72+x 13 1797.10+x 11 1834.59+x 10 1842.70+x 11 2026.72+x 11 2193.26+x 11 2329.11+x 10	11 ⁻ 12 ⁻ 13 ⁻ 14 ⁻ 13 ⁻ 14 ⁺ 12 ⁻ 13 ⁻		
2546.37+x <i>11</i> 2597.07+x <i>25</i>	15 ⁻ (17 ⁺)	2.0 ns 2 310 ns 50	T _{1/2} : From 325.8 γ (t), 371.4 γ (t) and 624.1 γ (t) (1981Th03). configuration: π (h ⁺¹ _{9/2}) $\otimes \nu$ (p ⁻¹ _{3/2} ,f ⁻¹ _{5/2} ,i ⁻¹ _{13/2}). The assignment is tentative. μ =+2.06 5 T _{1/2} : From 217 γ (t), 326 γ (t), 520 γ (t), 624 γ (t), 712 γ (t) and 866 γ (t) (1981Th03). It is unlikely that the isomer decays via 50.7-keV, M2 transition to the 2546.37+x-keV, 15 ⁻ level, since B(M2)(W.u.) \approx 14 W.u., which would exceed RUL by more than 3 σ . It is suggested in 1981Th03 that the depopulating transition is most likely E1 or E2, thus requiring an intermediate level with J^{π} =15 ⁺ , 16 ⁻ or 17 ⁻ which has not been observed yet. μ : From g=0.121 3 (1982Hu07), based on the time dependent perturbed angular distribution technique.
3050.38+x 15 3150.98+x 23 3386.58+x 27 3590.08+x 25 3629.78+x 18 3744.18+x 21 4140.28+x 23	16 ⁻ (18 ⁺) (17 ⁻) (18 ⁻) (19 ⁻)		configuration: $\pi(n_{9/2}) \otimes \mathcal{V}(n_{5/2}, n_{13/2}).$

[†] From a least-square fit to $E\gamma$, unless otherwise stated.

[‡] From 1981Th03, unless otherwise stated.

				²⁰³ Tl(α ,5n γ)	1981Th	03 (continu	ued)
						γ (²⁰² Bi)		
Eγ	I_{γ}^{\dagger}	E _i (level)	\mathbf{J}_i^{π}	E_f	\mathbf{J}_f^{π}	Mult. [‡]	α #	Comments
37.4 1	0.3 1	1834.59+x	14-	1797.10+x	13-	M1	34.0 6	$\alpha(L)=26.05; \alpha(M)=6.12\ 10; \alpha(N+)=1.92\ 3$ $\alpha(N)=1.57\ 3; \alpha(O)=0.320\ 6; \alpha(P)=0.0380\ 7$ Mult.: From intensity balance in 1981Th03.
^x 125.2 <i>1</i>	0.8 2 0.8 2	3/44.18+X	(18)	3629.78+X	(17)			Mult.: $A_2 = -0.32$ 14, $A_4 = 0.11$ 19.
135.9 1	1.7 3	2329.11+x	13-	2193.26+x	12-	M1	4.25	$\alpha(K)=3.45 5; \alpha(L)=0.605 9; \alpha(M)=0.1423$ $21; \alpha(N+)=0.0447 7$ $\alpha(N)=0.0364 6; \alpha(O)=0.00744 11;$ $\alpha(P)=0.000885 13$ Mult.: From $\alpha(exp)=4$ from intensity balance in 1081Tb03; $\Delta_{2}=-0.17 6, \Delta_{3}=-0.05 9$
184.0 <i>1</i>	9.1 <i>14</i>	2026.72+x	14+	1842.70+x	13-	E1		Mult.: From intensity balance in 1981Th03; $A_2 = -0.13 l A_1 = 0.02 2$
192.1 <i>1</i>	1.0 2	2026.72+x	14+	1834.59+x	14-	D		Mult: A_2 =0.32 <i>12</i> , A_4 =-0.05 <i>16</i> . ΔJ=0 transition
217.2 <i>I</i>	8.8 14	2546.37+x	15-	2329.11+x	13-	E2	0.338	$\begin{array}{l} \alpha(\text{K})=0.1390\ 20;\ \alpha(\text{L})=0.1480\ 21;\\ \alpha(\text{M})=0.0388\ 6;\ \alpha(\text{N}+)=0.01187\ 17\\ \alpha(\text{N})=0.00987\ 14;\ \alpha(\text{O})=0.00185\ 3;\\ \alpha(\text{P})=0.0001533\ 22\\ \text{Mult.:}\ \alpha(\text{K})\text{exp}=0.11\ 3;\ \text{A}_2=0.17\ 2,\\ \text{A}_4=-0.04\ 3. \end{array}$
229.7 <i>I</i> 242.1 <i>I</i>	≈5 5.1 8	2026.72+x 1471.29+x	14 ⁺ 12 ⁻	1797.10+x 1229.12+x	13 ⁻ 11 ⁻	M1	0.837	$\alpha(K)=0.682 \ 10; \ \alpha(L)=0.1184 \ 17; \ \alpha(M)=0.0278 \ 4; \ \alpha(N+)=0.00874 \ 13 \ \alpha(N)=0.00712 \ 10; \ \alpha(O)=0.001454 \ 21; \ \alpha(P)=0.0001731 \ 25 \ Mult.: \ \alpha(K)exp=0.9 \ 3; \ A_2=-0.27 \ 3, \ A_4=0.03 \ A_4=0$
325.8 1	22 3	1797.10+x	13-	1471.29+x	12-	M1	0.370	
363.4 1	4.5 7	1834.59+x	14-	1471.29+x	12-	(E2)	0.0696	α (M)=0.0427 6; α (L)=0.0202 3; α (M)=0.00515 8; α (N+)=0.001585 23 α (N)=0.001312 19; α (O)=0.000251 4; α (P)=2.30×10 ⁻⁵ 4
371.4 1	8.8 13	1842.70+x	13-	1471.29+x	12-	M1	0.260	Mult.: $A_2=0.22$ 4, $A_4=-0.05$ 5. $\alpha(K)=0.212$ 3; $\alpha(L)=0.0364$ 6; $\alpha(M)=0.00856$ 12; $\alpha(N+)=0.00269$ 4 $\alpha(N)=0.00219$ 3; $\alpha(O)=0.000447$ 7; $\alpha(P)=5.33\times10^{-5}$ 8 Mult.: $\alpha(K)\exp=0.42$; $A_2=-0.28$ 2, $A_4=-0.03$
396.1 <i>1</i>	8.3 12	4140.28+x	(19 ⁻)	3744.18+x	(18 ⁻)	M1	0.218	5. $\alpha(K)=0.1783\ 25;\ \alpha(L)=0.0306\ 5;$ $\alpha(M)=0.00718\ 10;\ \alpha(N+)=0.00226\ 4$ $\alpha(N)=0.00184\ 3;\ \alpha(O)=0.000375\ 6;$ $\alpha(P)=4.47\times10^{-5}\ 7$ Mult.: $\alpha(K)\exp=0.32\ 11;\ A_2=-0.30\ 3,$ $A_4=0.00\ 4.$
439.1 <i>1</i> 504.0 <i>1</i>	2.7 <i>4</i> 7.2 <i>11</i>	3590.08+x 3050.38+x	16-	3150.98+x 2546.37+x	(18 ⁺) 15 ⁻	M1		α (K)=0.07 3; α (L)=0.012 4; α (M)=0.0029 8; α (N+)=0.00092 23 α (N)=0.00075 19; α (O)=0.00015 4;

Continued on next page (footnotes at end of table)

203 Tl(α ,5n γ) 1981Th03 (continued)

$\gamma(^{202}\text{Bi})$ (continued)

E_{γ}	I_{γ}^{\dagger}	E _i (level)	\mathbf{J}_i^{π}	E_f	\mathbf{J}_f^{π}	Mult. [‡]	α #	Comments
519.7 <i>1</i>	20 3	2546.37+x	15-	2026.72+x	14+	E1	0.00915	$\alpha(P)=1.8\times10^{-5} 6$ Mult.: $\alpha(K)\exp=0.066 \ 20$; A ₂ =-0.43, A ₄ =0.01 5. $\alpha(K)=0.00755 \ 11$; $\alpha(L)=0.001223 \ 18$; $\alpha(M)=0.000285 \ 4$; $\alpha(N+)=8.87\times10^{-5}$ 13
553.9 <i>1</i>	15 2	3150.98+x	(18+)	2597.07+x	(17+)	M1	0.0894	$\alpha(N)=7.24\times10^{-3} II; \alpha(O)=1.459\times10^{-3}$ 21; $\alpha(P)=1.668\times10^{-6} 24$ Mult.: $\alpha(K)\exp=0.009 3; A_2=-0.16 I;$ $\alpha(K)=0.0732 II; \alpha(L)=0.01243 I8;$ $\alpha(M)=0.00291 4; \alpha(N+)=0.000916 I3$ $\alpha(N)=0.000745 II; \alpha(O)=0.0001524 22;$ $\alpha(P)=1.82\times10^{-5} 3$
564.6 <i>1</i> 579.4 <i>1</i> 593.2 <i>1</i> 597.8 <i>1</i>	3.4 5 2.9 5 4.4 7 100 <i>15</i>	1793.72+x 3629.78+x 3744.18+x 605	12 ⁽⁻⁾ (17 ⁻) (18 ⁻) (8 ⁻)	1229.12+x 3050.38+x 3150.98+x 7	11 ⁻ 16 ⁻ (18 ⁺) (7 ⁺)	D M1(+E2) E1	0.00689	Mult.: $\alpha(K)\exp=0.09 \ 3$; $A_2=-0.45 \ 2$, $A_4=0.02 \ 3$. Mult.: $A_2=-0.36 \ 8$, $A_4=0.04 \ 11$. Mult.: $A_2=-0.5 \ 2$, $A_4=0.01 \ 2$. Mult.: $A_2=0.37 \ 6$, $A_4=0.07 \ 8$. $\alpha(K)=0.00570 \ 8$; $\alpha(L)=0.000912 \ 13$; $\alpha(M)=0.000212 \ 3$; $\alpha(N+)=6.60\times10^{-5} \ 10^{-5}$
624.1 <i>I</i>	24 <i>3</i>	1229.12+x	11-	605+x	10-	M1	0.0653	$\alpha(N)=5.39\times10^{-5} 8; \alpha(O)=1.089\times10^{-5} 16; \alpha(P)=1.253\times10^{-6} 18 Mult.: \alpha(K)exp=0.007 2; A_2=-0.09 1, A_4=0.01 1. \alpha(K)=0.0535 8; \alpha(L)=0.00906 13; \alpha(M)=0.00212 3; \alpha(N+)=0.000667 10 \alpha(N)=0.000543 8; \alpha(O)=0.0001110 16; \alpha(P)=1.325\times10^{-5} 19 M km (K)=0.0212 21 A = 0.4422 $
711.8 <i>I</i>	12 2	2546.37+x	15-	1834.59+x	14-	(M1)		Mult.: $\alpha(K) \exp = 0.071 \ 21$; $A_2 = -0.44 \ 2$; $A_4 = 0.00 \ 3$. $\alpha(K) = 0.0109 \ 3$; $\alpha(L) = 0.00258 \ 5$; $\alpha(M) = 0.000629 \ 12$; $\alpha(N+) = 0.000196 \ 4$ $\alpha(N) = 0.000161 \ 3$; $\alpha(O) = 3.18 \times 10^{-5} \ 6$; $\alpha(P) = 3.38 \times 10^{-6} \ 7$
789.5 <i>1</i> 857.7 <i>1</i> 866.3 <i>1</i>	4.0 <i>6</i> 6.2 <i>9</i> 46 <i>7</i>	3386.58+x 2329.11+x 1471.29+x	13 ⁻ 12 ⁻	2597.07+x 1471.29+x 605+x	(17 ⁺) 12 ⁻ 10 ⁻	D E2	0.00929	Mult.: α (K)exp=0.009 3; A ₂ =-0.21 3, A ₄ =0.03 4. Mult.: A ₂ =0.31 6, A ₄ =-0.05 9. Mult.: A ₂ =0.02 5, A ₄ =-0.04 7. α (K)=0.00725 11; α (L)=0.001545 22; α (M)=0.000372 6; α (N+)=0.0001160 17 α (N)=9.50×10 ⁻⁵ 14; α (O)=1.89×10 ⁻⁵ 3;
964.2 <i>1</i>	11 2	2193.26+x	12-	1229.12+x	11-	D		α (P)=2.07×10 ⁻⁶ 3 Mult.: α (K)exp=0.01 3; A ₂ =0.24 1, A ₄ =-0.06 1. Mult.: A ₂ =-0.35 3, A ₄ =0.02 4.

[†] From E(α)=66 MeV data in 1981Th03. [‡] From 1981Th03 based on $\gamma(\theta)$, $\alpha(K)$ exp and intensity balances.

[#] Total theoretical internal conversion coefficients, calculated using the BrIcc code (2008Ki07) with Frozen orbital approximation based on γ -ray energies, assigned multipolarities, and mixing ratios, unless otherwise specified.

 $x \gamma$ ray not placed in level scheme.

