206 Fr α decay (16 s) 1992Hu04,2016Ly01

Type Author Citation Literature Cutoff Date

Full Evaluation F. G. Kondev NDS 196,342 (2024) 1-Sep-2023

Parent: 206 Fr: E=200 40; $J^{\pi}=7^{+}$; $T_{1/2}\approx16$ s; $Q(\alpha)=6923$ 3; $\%\alpha$ decay=84.7 15

²⁰⁶Fr-E: From 2021Ko07.

 206 Fr-J $^{\pi}$: From 2015Vo05 and 2016Ly01; π from μ .

 206 Fr- $T_{1/2}$: From 2008 Ko 21 .

 206 Fr-Q(α): From 2021Wa16.

 206 Fr- $\%\alpha$ decay: From 2016Ly01.

1992Hu04: 206 Fr was produced in nat Ir(20 Ne,xn) and 181 Ta(32 S,2p5n) reactions, and separated at the Leuven Isotope Separator On-Line (LISOL) facility. Recoils were implanted into a Mylar tape that periodically moved the source from the implantation station to the decay station. Detectors: 2 Ge and 1 Ge LEPS (γ rays), 1 Si(Li) (CE), several surface-barrier and PIPS detectors (α particles). Measured: $\alpha\gamma$ (t) and α -X(t).

2016Ly01: ²⁰⁶Fr was produced in the bombardment of 1.4 GeV protons on a Uranium carbide target at the ISOLDE-CERN facility. Recoils were selected by a high-resolution mass separator, injected into the ISCOOL cooler and buncher, resonantly excited with pulsed laser beams and implanted on a thin (20 μg/cm²) C foil. Alpha particles were measured using PIPS detectors. Others: 1961Gr42, 1964Gr04, 1967Va20, 1974Ho27 and 1981Ri04.

²⁰²At Levels

E(level) $J^{\pi \dagger}$ $T_{1/2}^{\dagger}$ 0 3^+ 184 s I 190 40 7^+ 182 s 2

α radiations

Eα E(level) $Iα^{\ddagger}$ HF[†] Comments

6790 3 190 ≈100 ≈2.5 Eα: From 1991Ry01, based on adjustment of the 6792 keV 5 (1967Va20), 6785 keV 5 (1974Ho27) and 6790 keV 5 (1981Ri04) values. Others: 6920 keV 20 (1964Gr04), 6740 keV (1961Gr42) and 6792 keV 5 (1992Hu04).

[†] From Adopted Levels.

 $^{^{\}dagger}$ r₀(202 At)=1.507 8, unweighted average of 1.5026 13 (200 Po), 1.4917 27 (202 Po), 1.5287 42 (202 Rn) and 1.5029 39 (204 Rn) from 2020Si16.

[‡] For absolute intensity per 100 decays, multiply by 0.847 15.