$^{201}\mathbf{Pb}\ \varepsilon$ decay 1979Do09

		History	
Туре	Author	Citation	Literature Cutoff Date
Full Evaluation	F. G. Kondev	NDS 187,355 (2023)	20-Sep-2022

Parent: ²⁰¹Pb: E=0.0; $J^{\pi}=5/2^-$; $T_{1/2}=9.33$ h 5; $Q(\varepsilon)=1910$ 19; $\mathscr{H}\varepsilon+\mathscr{H}\beta^+$ decay=100 1979Do09: ²⁰¹Pb source produced using ²⁰³Tl(p,3n) reaction; E(p)=27 MeV; Target: natural thallium; Detectors: Ge(Li) and NaI; Compton suppressed; Measured: $E\gamma$, $I\gamma$, γ singles, $\gamma\gamma$ coin; Deduced: $\alpha(K)exp$, $\alpha(L)exp$, subshell ratios, J^{π} , $T_{1/2}$, level scheme. Others: 1974Ha18, 1971Hn04, 1970DoZT, 1964Aa01, 1961Pe05, 1960Li08.

²⁰¹Tl Levels

E(level) [†]	$J^{\pi \ddagger}$	T _{1/2}	Comments
0.0	$1/2^{+}$	3.0420 d 16	T _{1/2} : From Adopted Levels.
331.17 <i>3</i>	3/2+	70 ps 20	$T_{1/2}$: From 360ce-331ce(Δt) in 1960Li08.
692.52 4	5/2+		-,-
1098.50 4	$5/2^{+}$		
1134.86 6	7/2+		
1157.43 4	$3/2^+, 5/2^+$		
1238.83 5	3/2+		
1277.12 4	$3/2^+, 5/2^+$		
1290.12 7	$(9/2)^+$		
1330.42 5	$3/2^+, 5/2^+$		
1401.26 5	$3/2^+, 5/2^+$		
1420.04 7	7/2+		
1445.87 6	$(5/2)^+$		
1479.85 <i>4</i>	5/2+		
1550.58? 15	1/2,3/2,5/2+		
1575.1 10	$(7/2)^+$		
1617.46 15	1/2,3/2,5/2+		
1639.36 4	$3/2^+, 5/2^+$		
1671.96 5	3/2+,5/2+		
1712.4? 3	3/2,5/2,7/2+		
1755.33 7	3/2,5/2+		

 † From a least-squares fit to Ey.

[‡] From Adopted Levels, unless otherwise stated.

ε, β^+ radiations

E(decay)	E(level)	$\mathrm{I}\varepsilon^{\dagger\ddagger}$	Log ft	Comments
(155 19)	1755.33	0.176 14	6.68 20	εK=0.51 9; εL=0.36 7; εM+=0.13 3
(198 [#] <i>19</i>)	1712.4?	0.034 8	7.73 17	εK=0.62 4; εL=0.28 3; εM+=0.102 11
(238 19)	1671.96	1.01 8	6.50 11	εK=0.668 21; εL=0.245 15; εM+=0.087 6
(271 19)	1639.36	1.43 19	6.50 11	εK=0.694 14; εL=0.227 10; εM+=0.080 4
(293 19)	1617.46	0.088 6	7.80 9	ε K=0.707 11; ε L=0.217 8; ε M+=0.076 4
(335 19)	1575.1	≈0.13	≈7.8	εK=0.725 8; εL=0.204 6; εM+=0.0706 22
(359 [#] 19)	1550.58?	0.028 3	8.52 8	εK=0.733 7; εL=0.199 5; εM+=0.0682 18
(430 19)	1479.85	2.66 18	6.73 6	εK=0.750 4; εL=0.187 3; εM+=0.0634 11
(464 19)	1445.87	0.35 3	7.69 6	εK=0.756 4; εL=0.1823 23; εM+=0.0617 9
(490 19)	1420.04	1.56 16	7.10 6	εK=0.760 3; εL=0.1796 20; εM+=0.0606 8
(509 19)	1401.26	2.36 16	6.96 5	εK=0.762 3; εL=0.1778 18; εM+=0.0599 8
(580 19)	1330.42	1.02 8	7.45 5	εK=0.7699 19; εL=0.1724 13; εM+=0.0577 6
(620 19)	1290.12	0.14 14	8.5^{1u} 5	εK=0.713 5; εL=0.213 4; εM+=0.0746 14
(633 19)	1277.12	12.3 9	6.46 5	εK=0.7744 15; εL=0.1692 11; εM+=0.0564 5
(671 19)	1238.83	7.4 6	6.73 5	εK=0.7771 13; εL=0.1673 10; εM+=0.0557 4

Continued on next page (footnotes at end of table)

$^{201}\mathbf{Pb}\ \varepsilon$ decay 1979Do09 (continued)

ϵ, β^+ radiations (continued)

E(decay)	E(level)	Iβ ⁺ ‡	$I\varepsilon^{\dagger\ddagger}$	Log ft	$I(\varepsilon + \beta^+)^{\ddagger}$	Comments
(753 19)	1157.43		≈3.2	≈7.2		εK=0.7818 10; εL=0.1639 7; εM+=0.0544 3
(775 19)	1134.86		0.66 16	7.92 11		εK=0.7829 10; εL=0.1631 7; εM+=0.0540 3
(812 19)	1098.50		≈6.2	≈7.0		εK=0.7845 9; εL=0.1619 6; εM+=0.05358 24
(1218 19)	692.52		6.2 8	7.37 6		εK=0.7955 4; εL=0.15399 25; εM+=0.05046 10
(1579 19)	331.17	0.057 11	52 6	6.69 6	52 6	av E β =272.2 85; ε K=0.7994; ε L=0.15040 16; ε M+=0.04907 7
(1910 <i>19</i>)	0.0	0.0009 5	0.7 4	9.84 ¹ <i>u</i> 25	0.7 4	av Eβ=429.4 82; εK=0.7882 2; εL=0.15830 23; εM+=0.05222 9
						I($\varepsilon + \beta^+$): From I($\varepsilon + \beta^+$)<1.4% in 1979Do09 and by assuming uniform probability distribution.

[†] From intensity balances and the decay scheme, unless otherwise stated.
[‡] Absolute intensity per 100 decays.
[#] Existence of this branch is questionable.

γ ⁽²⁰¹Tl)

Iγ normalization: Deduced using Σ (I(γ+ce)[g.s. ²⁰¹Tl])=100 – Iβ₀, with Iβ₀=0.7% 4.

ω

E_{γ}^{\dagger}	Ι _γ ‡ <i>c</i>	E _i (level)	\mathbf{J}_i^π	\mathbf{E}_{f}	J_f^π	Mult. [#]	α b	Comments
58.92 5	≈4.9	1157.43	3/2+,5/2+	1098.50 5	5/2+	[M1]	7.37 10	$\%$ I $\gamma \approx 0.0846$ α (L)=5.64 8; α (M)=1.320 19 α (N)=0.333 5; α (O)=0.0647 9; α (P)=0.00611 9 $\%$ I $\gamma \approx 0.083$ E _{γ} : From 1964Aa01. L _{γ} : From 1964Aa01.
120.0 2	1.2 3	1277.12	3/2+,5/2+	1157.43 3	3/2+,5/2+	[M1,E2]	3.9 12	$% [\gamma = 0.021 5] \alpha(K) = 0.23 18; \alpha(L) = 1.2 5; \alpha(M) = 0.31 14 \alpha(K) = 0.077 35; \alpha(D) = 0.014 6; \alpha(P) = 0.00071 6$
124.2 2	2.5 5	1401.26	3/2+,5/2+	1277.12 3	3/2+,5/2+	[M1,E2]	3.5 11	$\alpha(N)=0.07139, \alpha(O)=0.014, 0, \alpha(T)=0.00071, 0$ $\%I\gamma=0.043, 9$ $\alpha(K)=2.1, 17; \alpha(L)=1.1, 4; \alpha(M)=0.27, 12$ $\alpha(N)=0.067, 29; \alpha(O)=0.012, 5; \alpha(P)=0.00063, 7$
129.95 10	6.4 6	1420.04	7/2+	1290.12 (9	(9/2)+	[M1,E2]	3.0 10	$\alpha(1) = 0.00125, \alpha(1) = 0.0125, \alpha(1) = 0.000057$ % Iy = 0.110 I2 $\alpha(K) = 1.9 I4; \alpha(L) = 0.88 3I; \alpha(M) = 0.22 9$ $\alpha(N) = 0.056 22; \alpha(O) = 0.0100 35; \alpha(P) = 0.00054 8$
155.31 <i>10</i>	8.2 10	1290.12	(9/2)+	1134.86 7	7/2+	[M1,E2]	1.7 7	$\alpha(\mathbf{K}) = 0.142 \ Ig$ $\alpha(\mathbf{K}) = 1.2 \ g$, $\alpha(\mathbf{L}) = 0.44 \ Ig$; $\alpha(\mathbf{M}) = 0.110 \ 30$ $\alpha(\mathbf{N}) = 0.28 \ 7$; $\alpha(\mathbf{Q}) = 0.0050 \ II$; $\alpha(\mathbf{P}) = 0.00030 \ 7$
202.79 10	4.0 5	1479.85	5/2+	1277.12 3	3/2+,5/2+	[M1,E2]	0.8 4	$\alpha(\mathbf{K}) = 0.059 \ 9$ $\alpha(\mathbf{K}) = 0.64 \ \alpha(\mathbf{L}) = 0.165 \ 5; \ \alpha(\mathbf{M}) = 0.0407 \ 32$ $\alpha(\mathbf{N}) = 0.0102 \ 8; \ \alpha(\mathbf{O}) = 0.00188 \ 5; \ \alpha(\mathbf{P}) = 1.3 \times 10^{-4} \ 5$
231.87 10	6.5 8	1330.42	3/2+,5/2+	1098.50 5	5/2+	[M1,E2]	0.52 27	$\alpha(K) = 0.012 5$, $\alpha(L) = 0.00168 5$, $\alpha(L) = 1.5 \times 10^{-5} 5$ $\alpha(K) = 0.39 27$; $\alpha(L) = 0.104 7$; $\alpha(M) = 0.0254 5$ $\alpha(K) = 0.00640 15$, $\alpha(L) = 0.00110 8$; $\alpha(R) = 8.5 \times 10^{-5} 25$
241.02 8	10.0 10	1479.85	5/2+	1238.83 3	3/2+	[M1,E2]	0.47 25	$\alpha(N)=0.0040 \ 15; \ \alpha(O)=0.00119 \ 8; \ \alpha(P)=8.5\times10^{-5} \ 55$ %Iy=0.173 19 $\alpha(K)=0.35 \ 24; \ \alpha(L)=0.091 \ 8; \ \alpha(M)=0.0223 \ 10$
285.0 ^a 10	≈5.2 ^{<i>a</i>}	1575.1	(7/2)+	1290.12 (9	(9/2)+	(M1) ^{<i>a</i>}	0.451 8	$\alpha(N)=0.00561\ 26;\ \alpha(O)=0.00104\ 10;\ \alpha(P)=7.5\times10^{-5}\ 32$ %I $\gamma\approx0.0898$ $\alpha(K)=0.370\ 6;\ \alpha(L)=0.0625\ 11;\ \alpha(M)=0.01458\ 25$ $\alpha(N)=0.00368\ 6;\ \alpha(O)=0.000715\ 12;\ \alpha(P)=6.76\times10^{-5}\ 12$ %I $\chi\approx0.088$
285.18 ^{<i>a</i>} 13	≈5.2 ^{<i>a</i>}	1420.04	7/2+	1134.86 7	7/2+	[M1,E2] ^a	0.29 16	$\% I_{\gamma} \approx 0.0808$ $\% I_{\gamma} \approx 0.0898$ $\alpha(K) = 0.22 \ 15; \ \alpha(L) = 0.053 \ 10; \ \alpha(M) = 0.0127 \ 18$ $\alpha(N) = 0.0032 \ 5; \ \alpha(O) = 0.00060 \ 11; \ \alpha(P) = 4.6 \times 10^{-5} \ 22$ $\% I_{\gamma} \approx 0.088$
302.7 ^{&} 4	0.65 15	1401.26	3/2+,5/2+	1098.50 5	5/2+	[M1,E2]	0.25 14	%I _γ =0.0112 27 α(K)=0.19 13; $α(L)=0.043$ 9; $α(M)=0.0105$ 18 $α(N)=0.0026$ 5; $α(O)=0.00050$ 11; $α(P)=3.9\times10^{-5}$ 19

					201 Pb ε	decay 197	79Do09 (co	ntinued)	
						γ ⁽²⁰¹ Tl) (c	ontinued)		
E_{γ}^{\dagger}	$I_{\gamma}^{\ddagger c}$	E _i (level)	\mathbf{J}_i^{π}	E_f	\mathbf{J}_f^{π}	Mult. [#]	$\delta^{@}$	$\alpha^{\boldsymbol{b}}$	Comments
308.93 15	2.3 3	1639.36	3/2+,5/2+	1330.42	3/2+,5/2+	(M1)		0.362 5	%Iγ=0.040 6 $\alpha(K)=0.297$ 4; $\alpha(L)=0.0500$ 7; $\alpha(M)=0.01168$ 16 $\alpha(N)=0.00295$ 4; $\alpha(O)=0.000573$ 8; $\alpha(P)=5.42\times10^{-5}$ 8 Mult.: ce(K)=3.0 5 (1964Aa01); $\alpha(K)$ exp=0.67 15 (1979Do09). Note that $\alpha(K)$ exp is larger than that expected from theory and one may expect E0 admixtures: $\alpha(K)$ exp=0.37 13 (1971Hn04).
322.42 15	4.4 6	1479.85	5/2+	1157.43	3/2+,5/2+	[M1,E2]		0.21 12	%I γ =0.076 <i>11</i> α (K)=0.16 <i>11</i> ; α (L)=0.036 <i>9</i> ; α (M)=0.0086 <i>18</i> α (N)=0.0022 <i>5</i> ; α (O)=0.00041 <i>10</i> ; α (P)=3.2×10 ⁻⁵ <i>16</i>
331.15 6	455×10 ¹ 25	331.17	3/2+	0.0	1/2+	M1+E2	+1.33 6	0.161 5	%Iγ=78.5 6 α(K)=0.121 5; $α$ (L)=0.0305 6; $α$ (M)=0.00743 13 α(N)=0.001870 32; $α$ (O)=0.000348 6; $α$ (P)=2.59×10 ⁻⁵ 7 Mult.: $α$ (K)exp=0.1069 21, $α$ (L3)exp=0.00365 12, K/L=3.76 6 (1974Ha18) ce(K)=1000, K/L=3.9 3, L12/L3=7.1 9 (1964Aa01); $α$ (K)exp=0.113 8 (1961Pe05); K/L12=4.2 2, L12/L3=6.5 5 (1960Li08); γγ(θ) in 1961Pe05; $α$ (K)exp=0.113 8 (1979Do09), normalized value adopted by the authors from the data of 1961Pe05; $α$ (K)exp=0.111 16 (1971Hn04). δ: From 1974Ha18, by taking into account the penetration effect and using $λ$ =+4.0 10.
341.51 8	6.8 8	1671.96	3/2+,5/2+	1330.42	3/2+,5/2+	[M1,E2]		0.18 10	%I _Y =0.117 <i>15</i> α (K)=0.14 9; α (L)=0.030 8; α (M)=0.0072 <i>17</i> α (N)=0.0018 4; α (O)=3.4×10 ⁻⁴ 9; α (P)=2.7×10 ⁻⁵ <i>14</i>
344.95 7	18.3 15	1479.85	5/2+	1134.86	7/2+	M1(+E2)	<0.6	0.243 26	$%I\gamma = 0.316 30$ $\alpha(K) = 0.197 23; \ \alpha(L) = 0.0349 22; \ \alpha(M) = 0.0082 5$ $\alpha(N) = 0.00207 12; \ \alpha(O) = 0.000399 25; \ \alpha(P) = 3.7 \times 10^{-5} 4$ Mult.: ce(K) = 7.4 15 (1964Aa01); \alpha(K)exp = 0.21 11 (1979Do09); \alpha(K)exp = 0.23 6 (1971Hn04).
361.25 6	560 30	692.52	5/2+	331.17	3/2+	M1+E2	0.14 7	0.234 5	%Iγ=9.7 7 $\alpha(K)=0.191 4$; $\alpha(L)=0.0324 6$; $\alpha(M)=0.00755 13$ $\alpha(N)=0.001907 32$; $\alpha(O)=0.000370 7$; $\alpha(P)=3.49\times10^{-5} 7$ Mult: $\alpha(K)\exp=0.193 4$, $\alpha(L3)\exp=0.00029 7$ (1974Ha18); ce(K)=240 10, K/L=5.9 6, L12/L3=7.1 9 (1964Aa01); $\alpha(K)\exp=0.210 25$ and $\gamma\gamma(\theta)$ (1961Pe05); $\alpha(K)\exp=0.22 2$ (1979Do09). δ: From 1974Ha18, by taking into account the penetration effect and using λ =+0.5 5.
381.29 8	12.9 /	14/9.85	5/21	1098.50	5/21	MI(+E2)	<0.5	0.190 15	%1γ=0.223 <i>1</i> /

 $^{201}_{81}\text{Tl}_{120}\text{-}4$

н

					²⁰¹ Pb	ε decay 1	979Do09 (co	ntinued)	
						$\gamma(^{201}\text{Tl})$	(continued)		
E_{γ}^{\dagger}	$I_{\gamma}^{\ddagger c}$	E _i (level)	\mathbf{J}_i^{π}	E_f	\mathbf{J}_f^{π}	Mult. [#]	$\delta^{@}$	α b	Comments
					<u>_</u>				$\begin{aligned} &\alpha(\text{K}) = 0.155 \ 13; \ \alpha(\text{L}) = 0.0269 \ 14; \ \alpha(\text{M}) = 0.00629 \ 30 \\ &\alpha(\text{N}) = 0.00159 \ 8; \ \alpha(\text{O}) = 0.000307 \ 16; \ \alpha(\text{P}) = 2.85 \times 10^{-5} \\ &21 \\ &\text{Mult.: } ce(\text{K}) = 4.2 \ 7 \ (1964\text{Aa01}); \ \alpha(\text{K}) exp = 0.17 \ 3 \end{aligned}$
394.86 9	10.8 7	1671.96	3/2+,5/2+	1277.12	3/2+,5/2+	M1(+E2)	<0.4	0.177 10	(1979Do09); α (K)exp=0.16 4 (1971Hn04). %I γ =0.186 15 α (K)=0.145 8; α (L)=0.0248 9; α (M)=0.00579 20 α (N)=0.00146 5; α (O)=0.000283 11; α (P)=2.65×10 ⁻⁵
405.96 7	120 6	1098.50	5/2+	692.52	5/2+	M1(+E2)	<0.4	0.164 9	Mult.: ce(K)=3.6 <i>10</i> (1964Aa01); α (K)exp=0.17 <i>5</i> (1979Do09); α (K)exp=0.22 <i>7</i> (1971Hn04). %I γ =2.07 <i>15</i> α (K)=0.134 <i>8</i> ; α (L)=0.0230 <i>9</i> ; α (M)=0.00537 <i>19</i>
464 90 8	19.8.70	1157.43	3/2+.5/2+	692.52	5/2+	[M1+E2]		0.08 4	α (N)=0.00136 5; α (O)=0.000263 10; α (P)=2.46×10 ⁻⁵ 13 Mult.: ce(K)=33 3 (1964Aa01); α (K)exp=0.14 2 (1979D009); α (K)exp=0.15 3 (1971Hn04). %Iv=0.342.24
481.98 9	3.2 6	1639.36	3/2+,5/2+	1157.43	3/2+,5/2+	[M1+E2]		0.07 4	$\alpha(K) = 0.06 4; \alpha(L) = 0.012 4; \alpha(M) = 0.0029 10$ $\alpha(N) = 7.2 \times 10^{-4} 25; \alpha(O) = 1.4 \times 10^{-4} 5; \alpha(P) = 1.2 \times 10^{-5} 6$ %I $\gamma = 0.055 11$
514.38 9	9.1 20	1671.96	3/2+,5/2+	1157.43	3/2+,5/2+	[M1+E2]		0.059 33	$\alpha(K)=0.056 \ 34; \ \alpha(L)=0.011 \ 4; \ \alpha(M)=0.0026 \ 9$ $\alpha(N)=6.5\times10^{-4} \ 23; \ \alpha(O)=1.2\times10^{-4} \ 5; \ \alpha(P)=1.1\times10^{-5} \ 6$ $\%I\gamma=0.157 \ 35$ $\alpha(K)=0.047 \ 28; \ \alpha(L)=0.0091 \ 35; \ \alpha(M)=0.0022 \ 8$
540.90 <i>9</i>	16.2 <i>10</i>	1639.36	3/2+,5/2+	1098.50	5/2+	[M1+E2]		0.052 29	$\alpha(\mathbf{N})=0.047\ 20;\ \alpha(\mathbf{L})=0.0071\ 33;\ \alpha(\mathbf{M})=0.0022\ 0$ $\alpha(\mathbf{N})=5.4\times10^{-4}\ 20;\ \alpha(\mathbf{O})=1.0\times10^{-4}\ 4;\ \alpha(\mathbf{P})=9.\mathbf{E}-6\ 5$ $\%\mathbf{I}\gamma=0.280\ 22$ $\alpha(\mathbf{K})=0.042\ 25;\ \alpha(\mathbf{L})=0.0079\ 31;\ \alpha(\mathbf{M})=0.0019\ 7$
546.28 9	16.5 10	1238.83	3/2+	692.52	5/2+	M1+E2	0.31 24	0.074 8	$\alpha(N)=4.7 \times 10^{-4} \ 18; \ \alpha(O)=9.E-5 \ 4; \ \alpha(P)=8.E-6 \ 4$ % $I\gamma=0.285 \ 23 \ \alpha(K)=0.061 \ 7; \ \alpha(L)=0.0102 \ 9; \ \alpha(M)=0.00238 \ 20 \ \alpha(N)=0.00060 \ 5; \ \alpha(O)=0.000117 \ 10; \ \alpha(P)=1.10 \times 10^{-5}$
^x 562.81 ^{&} 10 584.60 8	1.8 <i>4</i> 211 <i>10</i>	1277.12	3/2+,5/2+	692.52	5/2+	M1(+E2)	<0.5	0.061 <i>5</i>	12 Mult.: ce(K)=1.9 2 (1964Aa01); α (K)exp=0.059 8 (1979Do09); α (K)exp=0.065 14 (1971Hn04). %Iγ=0.031 7 %Iγ=3.64 25 α (K)=0.050 4; α (L)=0.0085 5; α (M)=0.00198 12 α (N)=0.000499 30; α (O)=9.7×10 ⁻⁵ 6; α (P)=9.1×10 ⁻⁶ 7 Mult.: ce(K)=21 2 (1964Aa01); α (K)exp=0.051 6 (1979Do09); α (K)exp=0.06 1 and $\gamma\gamma(\theta)$ (1961Pe05); α (K)exp=0.049 10 (1971Hn04).

S

					201 Pb ε d	ecay 1979Do()9 (continued)	
						$\gamma(^{201}\text{Tl})$ (continu	ued)	
${\rm E_{\gamma}}^{\dagger}$	$I_{\gamma}^{\ddagger c}$	E _i (level)	J_i^π	$\mathbf{E}_f = \mathbf{J}_f^{\pi}$	Mult. [#]	$\delta^{@}$	$\alpha^{\boldsymbol{b}}$	Comments
597.60 9	19.0 10	1290.12	(9/2)+	692.52 5/2+	E2		0.01856 26	% $I\gamma=0.328\ 24$ $\alpha(K)=0.01385\ 19;\ \alpha(L)=0.00357\ 5;\ \alpha(M)=0.000872\ 12$ $\alpha(N)=0.0002194\ 31;\ \alpha(O)=4.07\times10^{-5}\ 6;\ \alpha(P)=2.97\times10^{-6}\ 4$ Mult.: ce(K)=0.6 2 (1964Aa01);\ \alpha(K)exp=0.016\ 6 (1979Do09): $\alpha(K)exp=0.017\ 5$ (1971Hn04).
637.90 9	21.7 10	1330.42	3/2+,5/2+	692.52 5/2+	[M1+E2]		0.034 18	$\%_{1\gamma=0.375} 26$ $\alpha(K)=0.028 16; \alpha(L)=0.0051 21; \alpha(M)=0.0012 5$ $\alpha(N)=3.0\times10^{-4} 12; \alpha(D)=5.8\times10^{-5} 24; \alpha(R)=5.1\times10^{-6} 26$
692.41 8	254 12	692.52	5/2+	0.0 1/2+	E2		0.01342 19	$\begin{array}{l} \alpha(N) = 3.0 \times 10^{-12}, \ \alpha(O) = 3.0 \times 10^{-224}, \ \alpha(I) = 3.1 \times 10^{-226} \\ \% I\gamma = 4.38 \ 30 \\ \alpha(K) = 0.01029 \ 14; \ \alpha(L) = 0.002385 \ 33; \ \alpha(M) = 0.000577 \ 8 \\ \alpha(N) = 0.0001451 \ 20; \ \alpha(O) = 2.71 \times 10^{-5} \ 4; \ \alpha(P) = 2.089 \times 10^{-6} \\ 29 \end{array}$
708.75 9	46.2 20	1401.26	3/2+,5/2+	692.52 5/2+	M1		0.0399 6	Mult.: ce(K)=5.0 5 (1964Aa01); α (K)exp=0.010 <i>I</i> (1979Do09); α (K)exp=0.017 5 (1971Hn04). %I γ =0.80 5 α (K)=0.0329 5; α (L)=0.00541 8; α (M)=0.001259 <i>I</i> 8 α (N)=0.000318 4; α (O)=6.18×10 ⁻⁵ 9; α (P)=5.87×10 ⁻⁶ 8 Mult.: ce(K)=4.0 5 (1964Aa01); α (K)exp=0.044 7
727.50 9	7.1 7	1420.04	7/2+	692.52 5/2+	[M1+E2]		0.025 13	(1979Do09); α (K)exp=0.049 <i>10</i> (1971Hn04). %I γ =0.123 <i>14</i> α (K)=0.020 <i>11</i> ; α (L)=0.0036 <i>15</i> ; α (M)=8.4×10 ⁻⁴ <i>34</i>
753.35 9	8.8 8	1445.87	$(5/2)^+$	692.52 5/2+	(E0+M1)			$\alpha(N)=2.1\times10^{-4} 8; \alpha(O)=4.1\times10^{-5} 17; \alpha(P)=3.7\times10^{-6} 18$ %I $\gamma=0.152 16$ Mult.: ce(K)=1.5 2 (1964Aa01); $\alpha(K)$ exp=0.087 16
767.26 8	194 <i>10</i>	1098.50	5/2+	331.17 3/2+	M1+E2	0.33 19	0.0304 25	(1979Do09). $\%_{I\gamma}=3.35\ 24$ $\alpha(K)=0.0250\ 21;\ \alpha(L)=0.00415\ 30;\ \alpha(M)=0.00097\ 7$ $\alpha(N)=0.000244\ 17;\ \alpha(O)=4.73\times10^{-5}\ 34;\ \alpha(P)=4.5\times10^{-6}\ 4$ Mult.: ce(K)=9 1 (1964Aa01);\ \alpha(K)exp=0.024\ 3 (1070Do00); $\alpha(K)exp=0.024\ 3$
787.29 10	34 4	1479.85	5/2+	692.52 5/2+	[M1+E2]		0.020 10	$\alpha(K)=0.017 \ 9; \ \alpha(L)=0.0029 \ 12; \ \alpha(M)=6.8\times10^{-4} \ 27$
803.66 7	90 6	1134.86	7/2+	331.17 3/2+	E2		0.00982 14	$\begin{aligned} &\alpha(N) = 1.7 \times 10^{-4} \ 7; \ \alpha(O) = 3.3 \times 10^{-5} \ 14; \ \alpha(P) = 3.0 \times 10^{-6} \ 15 \\ &\% I_{\gamma} = 1.55 \ 13 \\ &\alpha(K) = 0.00768 \ 11; \ \alpha(L) = 0.001627 \ 23; \ \alpha(M) = 0.000390 \ 5 \\ &\alpha(N) = 9.81 \times 10^{-5} \ 14; \ \alpha(O) = 1.850 \times 10^{-5} \ 26; \\ &\alpha(P) = 1.490 \times 10^{-6} \ 21 \\ &\text{Mult.: } \text{ce}(K) = 1.3 \ 2 \ (1964\text{Aa01}); \ \alpha(K) \text{exp} = 0.0074 \ 16 \end{aligned}$
826.26 8	141 7	1157.43	3/2+,5/2+	331.17 3/2+	M1+E2	1.98 +43-29	0.0129 10	(1979Do09); α (K)exp=0.0079 <i>16</i> (1971Hn04). %I γ =2.43 <i>17</i>

					20	⁾¹ Pb ε decay	1979Do09 (co	ntinued)	
						γ ⁽²⁰	¹ Tl) (continued)		
E_{γ}^{\dagger}	$I_{\gamma}^{\ddagger c}$	E _i (level)	\mathbf{J}_i^{π}	E_{f}	\mathbf{J}_f^{π}	Mult. [#]	$\delta^{@}$	$\alpha^{\boldsymbol{b}}$	Comments
907.67 8	362 20	1238.83	3/2+	331.17	3/2+	M1+E2	0.43 +23-34	0.0190 20	$\begin{aligned} &\alpha(\text{K}) = 0.0103 \ 8; \ \alpha(\text{L}) = 0.00195 \ 12; \ \alpha(\text{M}) = 0.000461 \ 28 \\ &\alpha(\text{N}) = 0.000116 \ 7; \ \alpha(\text{O}) = 2.22 \times 10^{-5} \ 14; \\ &\alpha(\text{P}) = 1.92 \times 10^{-6} \ 15 \\ &\text{Mult.: } \text{ce}(\text{K}) = 2.8 \ 3 \ (1964\text{Aa01}); \ \alpha(\text{K})\text{exp} = 0.010 \ 1 \\ &(1979\text{Do09}); \ \alpha(\text{K})\text{exp} = 0.0110 \ 15 \ (1971\text{Hn04}). \\ &\%\text{I}\gamma = 6.2 \ 5 \\ &\alpha(\text{K}) = 0.0156 \ 17; \ \alpha(\text{L}) = 0.00259 \ 24; \ \alpha(\text{M}) = 0.00060 \ 6 \\ &\alpha(\text{N}) = 0.000152 \ 14; \ \alpha(\text{O}) = 2.95 \times 10^{-5} \ 28; \end{aligned}$
945.96 8	424 <i>30</i>	1277.12	3/2+,5/2+	331.17	3/2+	M1(+E2)	<0.6	0.0174 <i>16</i>	$\alpha(P)=2.78\times10^{-6} 29$ Mult.: ce(K)=10.7 <i>10</i> (1964Aa01); $\alpha(K)$ exp=0.015 2 (1979Do09); $\alpha(K)$ exp=0.017 3 (1971Hn04). %I γ =7.3 6 $\alpha(K)$ =0.0143 <i>13</i> ; $\alpha(L)$ =0.00236 20; $\alpha(M)$ =0.00055 4 $\alpha(N)$ =0.000139 <i>11</i> ; $\alpha(O)$ =2.69×10 ⁻⁵ 22;
946.78 <i>4</i>	28 10	1639.36	3/2+,5/2+	692.52	5/2+	[M1+E2]		0.013 6	$\alpha(P)=2.55\times10^{-6}\ 23$ Mult.: ce(K)=12 <i>I</i> (1964Aa01); α (K)exp=0.014 2 (1979Do09); α (K)exp=0.0160 25 (1971Hn04). %I γ =0.48 <i>I</i> 7 α (K)=0.011 5; α (L)=0.0018 7; α (M)=4.3×10 ⁻⁴ <i>I</i> 7
979.4 <i>3</i>	1.1 3	1671.96	3/2+,5/2+	692.52	5/2+	[M1+E2]		0.012 5	$\alpha(N) = 1.1 \times 10^{-4} 4; \ \alpha(O) = 2.1 \times 10^{-5} 8; \ \alpha(P) = 1.9 \times 10^{-6} 9$ %Iy=0.019 5 (K) 0.010 5 (L) 0.0017 7 (N) 2.0 10 ⁻⁴ 15
999.23 7	38.3 20	1330.42	3/2+,5/2+	331.17	3/2+	[M1+E2]		0.011 5	$\alpha(\mathbf{K})=0.010 \ 5; \ \alpha(\mathbf{L})=0.00177; \ \alpha(\mathbf{M})=5.9\times10^{-7} \ 15$ $\alpha(\mathbf{N})=1.0\times10^{-4} \ 4; \ \alpha(\mathbf{O})=1.9\times10^{-5} \ 8; \ \alpha(\mathbf{P})=1.8\times10^{-6} \ 8$ $\%\mathbf{I}\gamma=0.66 \ 5$ $\alpha(\mathbf{K})=0.000 \ 4; \ \alpha(\mathbf{L})=0.0016 \ 6; \ \alpha(\mathbf{M})=3.7\times10^{-4} \ 14$
x1010.3& 3 1019.8& 3 1062.79 15	1.0 2 0.9 4 4.0 5	1712.4? 1755.33	3/2,5/2,7/2 ⁺ 3/2,5/2 ⁺	692.52 692.52	5/2 ⁺ 5/2 ⁺				$\alpha(N)=9.E-5 \ 4; \ \alpha(O)=1.8\times10^{-5} \ 7; \ \alpha(P)=1.7\times10^{-6} \ 7$ %Iy=0.017 4 %Iy=0.016 7 %Iy=0.069 9
1070.04 <i>8</i> 1088.85 <i>9</i>	72 <i>4</i> 53 <i>3</i>	1401.26 1420.04	3/2+,5/2+ 7/2+	331.17 331.17	3/2+	E2+M1 [E2]	1.8 +10-5	0.0075 11	%lγ=1.24 9 α (K)=0.0061 9; α (L)=0.00107 14; α (M)=0.000252 32 α (N)=6.3×10 ⁻⁵ 8; α (O)=1.22×10 ⁻⁵ 16; α (P)=1.10×10 ⁻⁶ 16 Mult.: ce(K)=0.8 1 (1964Aa01); α (K)exp=0.0057 10 (1979Do09); α (K)exp=0.0069 15 (1971Hn04). %Iγ=0.91 7 α (K)=0.00433 6; α (L)=0.000799 11; α (M)=0.0001886
1098.52 7	111 6	1098.50	5/2+	0.0	1/2+	E2		0.00528 7	26 $\alpha(N)=4.75\times10^{-5}$ 7; $\alpha(O)=9.06\times10^{-6}$ 13; $\alpha(P)=7.82\times10^{-7}$ 11 %I $\gamma=1.92$ 14

					²⁰¹ P	b ε decay	1979Do09 (contin	nued)	
						γ ⁽²⁰¹ T)	l) (continued)		
${\rm E_{\gamma}}^{\dagger}$	$I_{\gamma}^{\ddagger c}$	E _i (level)	\mathbf{J}_i^{π}	E_{f}	\mathbf{J}_f^{π}	Mult. [#]	$\delta^{@}$	$\alpha^{\boldsymbol{b}}$	Comments
					<u> </u>				$\alpha(K)=0.00426 \ 6; \ \alpha(L)=0.000784 \ 11;$ $\alpha(M)=0.0001849 \ 26$ $\alpha(N)=4.66\times10^{-5} \ 7; \ \alpha(O)=8.89\times10^{-6} \ 12;$ $\alpha(P)=7.68\times10^{-7} \ 11$ Mult.: ce(K)=1.2 2 (1964Aa01); $\alpha(K)$ exp=0.0055 $\mu l \ (1979Pc00); \ \alpha(K)$ exp=0.0061 $\ l \ 5 \ (1971Hc04)$
1114.73 8	9.8 6	1445.87	(5/2)+	331.17	3/2+	M1(+E2)	<0.3	0.01218 35	$ \begin{array}{l} & \alpha(\mathrm{R}) = 0.169 \ 13 \\ & \alpha(\mathrm{K}) = 0.0104 \ 29; \ \alpha(\mathrm{L}) = 0.00164 \ 4; \ \alpha(\mathrm{M}) = 0.000380 \\ & 10 \\ & \alpha(\mathrm{N}) = 9.58 \times 10^{-5} \ 26; \ \alpha(\mathrm{O}) = 1.86 \times 10^{-5} \ 5; \\ & \alpha(\mathrm{P}) = 1.77 \times 10^{-6} \ 5; \ \alpha(\mathrm{IPF}) = 4.97 \times 10^{-7} \ 12 \\ & \mathrm{Mult.:} \ \mathrm{ce}(\mathrm{K}) = 0.20 \ 3 \ (1964\mathrm{Aa01}); \ \alpha(\mathrm{K}) \mathrm{exp} = 0.010 \ 2 \\ & (1979\mathrm{Do09}); \ \alpha(\mathrm{K}) \mathrm{exp} = 0.011 \ 3 \ (1971\mathrm{Hn04}). \end{array} $
1124.94 2 1148.75 8	47.3 25	1479.85	5/2+	331.17	3/2+	M1+E2	1.1 +4-3	0.0079 <i>11</i>	$%I\gamma = 0.0098$ 18 $%I\gamma = 0.82$ 6 $\alpha(K) = 0.0065$ 9; $\alpha(L) = 0.00109$ 13; $\alpha(M) = 0.000254$ 30 $\alpha(N) = 6.4 \times 10^{-5}$ 8; $\alpha(O) = 1.24 \times 10^{-5}$ 15; $\alpha(P) = 1.15 \times 10^{-6}$ 16; $\alpha(IPF) = 1.34 \times 10^{-6}$ 12 Mult.: ce(K) = 0.6 1 (1964Aa01); $\alpha(K)$ exp=0.0065 10 (1979Do09); $\alpha(K)$ exp=0.0076 20 (1971Hn04).
1157.45 9	7.2 4	1157.43	3/2+,5/2+	0.0	1/2+	[M1,E2]		0.0081 <i>33</i>	%I γ =0.124 9 α (K)=0.0066 27; α (L)=0.0011 4; α (M)=2.6×10 ⁻⁴ 9 α (N)=6.5×10 ⁻⁵ 24; α (O)=1.3×10 ⁻⁵ 5; α (P)=1.2×10 ⁻⁶ 5; α (IPF)=1.8×10 ⁻⁶ 5
1219.40 ^{<i>d</i>} 15 1238.82 7	1.4 <i>1</i> 68 <i>4</i>	1550.58? 1238.83	1/2,3/2,5/2 ⁺ 3/2 ⁺	331.17 0.0	3/2 ⁺ 1/2 ⁺	M1+E2	1.17 +57-35	0.0065 9	%I γ =0.0242 21 %I γ =1.17 9 α (K)=0.0053 8; α (L)=0.00089 12; α (M)=0.000207 27 α (N)=5.2×10 ⁻⁵ 7; α (O)=1.01×10 ⁻⁵ 14; α (P)=9.3×10 ⁻⁷ 14; α (IPF)=1.02×10 ⁻⁵ 10 Mult.: ce(K)=0.7 1 (1964Aa01); α (K)exp=0.0053 9
1277.11 7	100	1277.12	3/2+,5/2+	0.0	1/2+	[M1,E2]		0.0064 24	(19/9D009); α (K)exp=0.0053 <i>I</i> 5 (19/1Hn04). %I γ =1.73 <i>9</i> α (K)=0.0053 <i>20</i> ; α (L)=8.7×10 ⁻⁴ <i>31</i> ; α (M)=2.0×10 ⁻⁴ <i>7</i> α (N)=5.1×10 ⁻⁵ <i>I</i> 8; α (O)=9.9×10 ⁻⁶ <i>35</i> ; α (P)=9.E-7 <i>4</i> ; α (IPF)=1.7×10 ⁻⁵ <i>4</i>
1286.3 ^{<i>d</i>} 2 1308.32 8	3.75 20 32.6 16	1617.46 1639.36	1/2,3/2,5/2 ⁺ 3/2 ⁺ ,5/2 ⁺	331.17 331.17	3/2 ⁺ 3/2 ⁺	M1(+E2)	<0.6	0.0077 6	%Iy=0.065 5 %Iy=0.56 4

 ∞

					20	¹ Pb ε decay	1979Do09	(continued)
						$\gamma(^{201}$	Tl) (continue	<u>d)</u>
E_{γ}^{\dagger}	$I_{\gamma}^{\ddagger c}$	E _i (level)	\mathbf{J}_i^{π}	\mathbf{E}_{f}	\mathbf{J}_f^{π}	Mult. [#]	α b	Comments
								$\begin{aligned} &\alpha(\text{K}) = 0.0064 \ 5; \ \alpha(\text{L}) = 0.00103 \ 8; \ \alpha(\text{M}) = 0.000240 \ 18 \\ &\alpha(\text{N}) = 6.1 \times 10^{-5} \ 4; \ \alpha(\text{O}) = 1.18 \times 10^{-5} \ 9; \ \alpha(\text{P}) = 1.12 \times 10^{-6} \ 9; \\ &\alpha(\text{IPF}) = 2.77 \times 10^{-5} \ 16 \\ &\text{Mult.: } \text{ce}(\text{K}) = 0.6 \ 2 \ (1964\text{Aa01}); \ \alpha(\text{K}) \text{exp} = 0.009 \ 4 \ (1979\text{Do09}); \\ &\alpha(\text{K}) \text{exp} = 0.010 \ 3 \ (1971\text{Hn04}). \end{aligned}$
1330.50 <i>15</i>	0.86 15	1330.42	3/2+,5/2+	0.0	1/2+	[M1,E2]	0.0058 22	%I γ =0.0148 27 α (K)=0.0048 18; α (L)=7.9×10 ⁻⁴ 27; α (M)=1.8×10 ⁻⁴ 6 α (N)=4.6×10 ⁻⁵ 16; α (O)=9.0×10 ⁻⁶ 31; α (P)=8.4×10 ⁻⁷ 32; α (IPF)=2.8×10 ⁻⁵ 7
1340.88 9	26.9 <i>15</i>	1671.96	3/2+,5/2+	331.17	3/2+	[M1+E2]	0.0057 21	%Iy=0.464 35 $\alpha(K)=0.0047 \ 17; \ \alpha(L)=7.8\times10^{-4} \ 27; \ \alpha(M)=1.8\times10^{-4} \ 6$ $\alpha(N)=4.6\times10^{-5} \ 15; \ \alpha(O)=8.8\times10^{-6} \ 30; \ \alpha(P)=8.2\times10^{-7} \ 31;$ $\alpha(IPF)=3.1\times10^{-5} \ 8$
1381.4 <i>3</i> 1401.30 <i>8</i>	1.1 2 7.9 <i>4</i>	1712.4? 1401.26	3/2,5/2,7/2 ⁺ 3/2 ⁺ ,5/2 ⁺	331.17 0.0	3/2 ⁺ 1/2 ⁺	[M1,E2]	0.0052 18	%I γ =0.019 4 %I γ =0.136 10 α (K)=0.0042 15; α (L)=7.0×10 ⁻⁴ 23; α (M)=1.6×10 ⁻⁴ 5 α (N)=4.1×10 ⁻⁵ 14; α (O)=7.9×10 ⁻⁶ 27; α (P)=7.4×10 ⁻⁷ 27; α (IPF)=4.9×10 ⁻⁵ 13
1424.16 9 1445.80 <i>10</i>	5.8 <i>3</i> 2.10 <i>10</i>	1755.33 1445.87	3/2,5/2 ⁺ (5/2) ⁺	331.17 0.0	3/2 ⁺ 1/2 ⁺	[E2]	0.00319 4	%Iy=0.100 7 %Iy=0.0362 25 α (K)=0.00257 4; α (L)=0.000437 6; α (M)=0.0001021 14 α (N)=2.57×10 ⁻⁵ 4; α (O)=4.95×10 ⁻⁶ 7; α (P)=4.45×10 ⁻⁷ 6; α (IPF)=4.84×10 ⁻⁵ 7
1479.91 <i>10</i>	10.4 5	1479.85	5/2+	0.0	1/2+	[E2]	0.00307 4	%I γ =0.180 <i>I3</i> α (K)=0.002468 <i>35</i> ; α (L)=0.000417 <i>6</i> ; α (M)=9.73×10 ⁻⁵ <i>14</i> α (N)=2.451×10 ⁻⁵ <i>34</i> ; α (O)=4.72×10 ⁻⁶ <i>7</i> ; α (P)=4.26×10 ⁻⁷ <i>6</i> ; α (IPF)=5.82×10 ⁻⁵ <i>8</i> E _{γ} : In table II of 1979Do09 E γ =1470.91 keV is listed, which is a typo as evident from the spectrum shown in Figure 2 in 1979Do09.
x1486.20 <i>12</i>	1.1 <i>1</i>							%Iγ=0.0190 20
1550.5 ^{<i>a</i>} 4	0.27 4	1550.58?	1/2,3/2,5/2+	0.0	$1/2^{+}$			%Iy=0.0047 7
^x 1587.6 [∞] 5 1617.45 15	0.15 5 1.4 <i>1</i>	1617.46	1/2,3/2,5/2+	0.0	1/2+			%1y=0.0026 9 %1y=0.0242 21
^x 1630.9 ^{&} 6 1639.1 5	0.14 <i>4</i> 0.20 <i>5</i>	1639.36	3/2+,5/2+	0.0	1/2+	[M1,E2]	0.0037 11	%Iγ=0.0024 7 %Iγ=0.0035 9 α (K)=0.0030 9; α (L)=4.8×10 ⁻⁴ 14; α (M)=1.12×10 ⁻⁴ 33 α (N)=2.8×10 ⁻⁵ 8; α (O)=5.5×10 ⁻⁶ 16; α (P)=5.1×10 ⁻⁷ 16;
1672.02 10	1.45 10	1671.96	3/2+,5/2+	0.0	$1/2^{+}$	[M1,E2]	0.0036 11	$\alpha(\Pi r) = 0.00015 \ 4$ %I $\gamma = 0.0250 \ 21$

 $^{201}_{81}$ Tl $_{120}$ -9

$\gamma(^{201}\text{Tl})$ (continued)

E_{γ}^{\dagger}	I_{γ} [‡] <i>c</i>	E _i (level)	\mathbf{J}_i^{π}	$\mathbf{E}_f \mathbf{J}_f^{\pi}$	Comments
					$\alpha(K)=0.0028 \ 9; \ \alpha(L)=4.6\times10^{-4} \ 13; \ \alpha(M)=1.07\times10^{-4} \ 31$ $\alpha(N)=2.7\times10^{-5} \ 8; \ \alpha(O)=5.2\times10^{-6} \ 15; \ \alpha(P)=4.9\times10^{-7} \ 15; \ \alpha(IPF)=0.00017 \ 4$
^x 1678.96 <i>13</i>	0.24 3				%Iy=0.0041 6
1755.32 10	0.65 6	1755.33	3/2,5/2+	0.0 1/2+	%Iy=0.0112 12
^x 1813.1 ^{&} 3	0.26 5				%Iy=0.0045 9

[†] From 1979Do09, unless otherwise stated.

[‡] From singles measurements in 1979Do09, unless otherwise stated. I γ (x-ray)=4980 250 and I γ (γ [±])=6 1 in 1979Do09.

[#] From $\alpha(K)exp$, $\alpha(L)exp$, K/L, $\gamma\gamma(\theta)$ and multiple decay branches in 1979Do09, 1960Li08, 1961Pe05, 1964Aa01 and 1974Ha18, unless otherwise stated.

[@] From α(K)exp and sub-shell ratios in 1979Do09, 1974Ha18, 1971Hn04, 1964Aa01, and 1961Pe05 and the briccmixing program, unless otherwise stated.

& Assignment to ²⁰¹Pb ε decay is uncertain (1979Do09).

^{*a*} The authors in 1979Do09 report a transition with $E\gamma$ =285.04 keV 7 and $I\gamma$ =10.3 *10* doubly placed from the 1420 and 1575 keV levels with roughly equal intensities. α (K)exp=0.37 8, assuming Mult=M1 for the doublet. The transition is not included in the least-squares fit. For placement from the 1420 keV level, the evaluator chooses $E\gamma$ =285.18 keV 13, as given from the levels energy difference in the least-squares fit. For placement from the 1575 keV level, where the 285 γ is the only deexciting transition, the evaluator adopts $E\gamma$ =285.0 keV *10*. The evaluator adopts $I\gamma$ ≈5.2 for each placement. Both transitions involve Δ J=0 or 1 and $\Delta\pi$ =no, and since $I\gamma$'s are roughly equal, Mult.=M1 can be assigned to both placements.

10

^b Additional information 1. ^c For absolute intensity per 100 decays, multiply by 0.0173 9.

^d Placement of transition in the level scheme is uncertain.

 $x \gamma$ ray not placed in level scheme.

From ENSDF

²⁰¹Pb ε decay 1979Do09

 $^{201}_{81}\text{Tl}_{120}\text{-}12$

From ENSDF

 $^{201}_{81}\text{Tl}_{120}\text{-}12$