²⁰¹At ε decay **2010De04**

		History	
Туре	Author	Citation	Literature Cutoff Date
Full Evaluation	F. G. Kondev	NDS 187,355 (2023)	20-Sep-2022

Parent: ²⁰¹At: E=0; $J^{\pi}=9/2^-$; $T_{1/2}=87.6$ s *13*; $Q(\varepsilon)=5732$ *10*; $\%\varepsilon+\%\beta^+$ decay=29 7 ²⁰¹At- $Q(\varepsilon)$: From 2021Wa16.

2010De04: 1.4 GeV proton beam induced spallation on a 49 mg/cm² UC₂-C target at ISOLDE-CERN facility. Francium was surface ionized, accelerated to 30 keV and mass separated by the ISOLDE General Purpose Separator (GPS). Using tape systems, measured $E\gamma$, $I\gamma$, $\gamma\gamma$, ce, γ (ce) coin; Detectors: two HPGe detectors located at 90° and 180° around Si(Li) detector placed in a MINI-ORANGE spectrometer. ²⁰¹At source is produced from α decay of ²⁰⁵Fr. Other: 1970DaZM.

²⁰¹Po Levels

E(level) [†]	$J^{\pi \ddagger}$	T _{1/2} ‡	Comments
0.0	3/2-	15.50 min 22	
5.61 13	5/2-		
423.4 <i>3</i>	$13/2^{+}$	8.96 min 12	$\%$ IT \approx 42.6; $\%\alpha$ =2.4 5; $\%\varepsilon$ + $\%\beta$ ⁺ \approx 55
			%IT, $\%\alpha$ and $\%\varepsilon + \%\beta^+$ are from Adopted Levels.
621.66 17	$(7/2)^{-}$		
623.3? 5	(5/2 ⁻)		E(level): No γ -rays reported in 2010De04 to depopulate this level, presumably due to small branchings to low-lying states. Evidence for the existence of this level is from $\gamma\gamma$ coin data.
722.44 19	$7/2^{-}$		
758.30? 20	$(7/2)^{-}$		
766.3? <i>3</i>	$(9/2)^{-}$		
1006.7? 4	$(11/2)^+$		
1015.2 4	$(11/2)^+$		
1059.5 4	$(7/2)^{-}$		
1124.8? 5	(7/2,9/2,11/2)		
1242.9? 5	(7/2,9/2,11/2)		
1552.2 4	$(9/2)^+$		
1574.3 4	$(9/2,11/2)^+$		
2044.0 5	$(9/2)^+$		
2202.9 5	$(9/2, 11/2)^+$		

 † From a least-squares fit to $E\gamma's,$ unless otherwise stated.

[‡] From Adopted Levels.

ε, β^+	radiations

E(decay)	E(level)	Ιβ ⁺ ‡	Ie‡	Log ft	$I(\varepsilon + \beta^+)^{\dagger \ddagger}$	Comments
(3529 10)	2202.9	0.17 6	1.0 3	6.62 18	1.2 4	av E β =1130.9 45; ε K=0.6904 12; ε L=0.12822 23; ε M+=0.04250 8
(3688 10)	2044.0	0.47 15	2.4 8	6.29 17	2.9 9	av E β =1201.4 45; ε K=0.6719 12; ε L=0.12454 24; ε M+=0.04126 8
(4158 10)	1574.3	0.09 6	0.27 19	7.3 4	0.36 25	av Eβ=1411.0 45; εK=0.6118 14; εL=0.1129 3; εM+=0.03736 9
(4180 10)	1552.2	0.9 3	2.8 9	6.34 18	3.7 12	av Eβ=1420.9 45; εK=0.6088 14; εL=0.1123 3; εM+=0.03717 9
(4489 10)	1242.9?	0.12 3	0.28 8	7.40 16	0.40 11	av Eβ=1559.8 45; εK=0.5666 14; εL=0.1042 3; εM+=0.03449 9
(4607 10)	1124.8?	0.11 3	0.23 6	7.51 16	0.34 9	av Eβ=1612.9 46; εK=0.5503 14; εL=0.1011 3; εM+=0.03346 9
(4717 10)	1015.2	1.3 3	2.6 7	6.48 16	3.9 10	av Eβ=1662.4 46; εK=0.5351 14; εL=0.0983 3;

Continued on next page (footnotes at end of table)

²⁰¹At ε decay 2010De04 (continued)

ϵ, β^+ radiations (continued)

E(decay)	E(level)	Iβ ⁺ ‡	$\mathrm{I}\varepsilon^{\ddagger}$	Log ft	$I(\varepsilon + \beta^+)^{\dagger \ddagger}$	Comments
(4725 10)	1006.7?	1.6 4	3.3 9	6.38 16	4.9 13	ε M+=0.03251 9 av E β =1666.2 46; ε K=0.5340 14; ε L=0.0981 3; ε M+=0.03244 9
(4966 10)	766.3?	2.0 5	3.2 9	6.43 16	5.2 14	av E β =1775.0 46; ε K=0.5011 14; ε L=0.0919 3; ε M+=0.03038
(4974 10)	758.30?	0.76 23	1.2 4	6.85 17	2.0 6	av E β =1778.6 46; ε K=0.5000 14; ε L=0.0917 3; ε M+=0.03032
(5010 10)	722.44	1.4 3	2.2 6	6.60 16	3.6 9	av E β =1794.8 46; ε K=0.4951 14; ε L=0.0908 3; ε M+=0.03002
(5110 10)	621.66	1.0 3	1.6 4	6.77 16	2.6 7	av Eβ=1840.6 46; εK=0.4816 14; εL=0.0882 3; εM+=0.02917 9

[†] From the decay scheme and the intensity balances. There is a negative intensity balance at the 1059.5-keV level. [‡] Absolute intensity per 100 decays.

 $\gamma(^{201}\text{Po})$

Iv normalization: $\Sigma I(\gamma + ce)(to g.s.) = 100\%$ and by assuming that there is no direct feeding to the g.s. $(J^{\pi} = 3/2^{-})$, 5.61-keV level $(J^{\pi} = 5/2^{-})$, 423.4-keV level $(J^{\pi} = 13/2^{+})$ and the 623.3-keV level $(J^{\pi} = (5/2)^{-})$. $\delta^{@}$ α<mark>&</mark> E_{γ}^{\dagger} $I_{(\gamma+ce)}^{a}$ $I_{\gamma}^{\dagger a}$ Mult.# E_i(level) \mathbf{E}_{f} J_{f}^{π} Comments $5/2^{-}$ $0.0 \quad 3/2^{-}$ 264 9 $I_{(\gamma+ce)}$: From the decay scheme and the (5.61 13) 5.61 intensity balance. %I γ =0.34 9 358.5 4 (7/2, 9/2, 11/2)766.3? (9/2)-4.0 4 1124.8? x392.2b E_{γ} : Weak γ ray reported in 2010De04 to depopulate $J^{\pi} = (11/2^+)$ level, but the placement is unlikely given the expected Mult=[E3]. 161 6 417.8 2 27.6 11 423.4 $13/2^{+}$ 5.61 5/2-4.84 7 %I γ =2.4 6 M4 $\alpha(K)=2.74$ 4; $\alpha(L)=1.542$ 22; $\alpha(M)=0.424$ 6 $\alpha(N)=0.1116\ 16;\ \alpha(O)=0.02250\ 32;$ $\alpha(P)=0.00253 4$ E_{γ} ,Mult.: From adopted gammas. I_{γ} : From I(γ +ce) and α . $I_{(\gamma+ce)}$: From the decay scheme and the intensity balance. 436.2 2 11.5 10 1059.5 $623.3? (5/2^{-})$ M1+E2 0.93 23 0.119 19 $%I\gamma = 0.98\ 25$ $(7/2)^{-}$ $\alpha(K) \exp = 0.094 \ 14$ $\alpha(K)=0.094$ 16; $\alpha(L)=0.0193$ 19; $\alpha(M)=0.0046$ 4 $\alpha(N)=0.00119 \ 11; \ \alpha(O)=0.000246 \ 24;$ $\alpha(P)=3.0\times10^{-5}$ 4 %Iy=0.40 11 476.6 4 4.7 5 1242.9? (7/2, 9/2, 11/2)766.3? (9/2) 0.0334 5 491.8 2 33 5 2044.0 $(9/2)^+$ $1552.2 (9/2)^+$ E2 $\%I\gamma = 2.8 \ 8$ $\alpha(K) \exp = 0.023 7$ $\alpha(K)=0.02292 \ 32; \ \alpha(L)=0.00788 \ 11;$ $\alpha(M) = 0.001982\ 28$ $\alpha(N)=0.000509$ 7; $\alpha(O)=0.0001015$ 14; $\alpha(P)=1.111\times10^{-5}$ 16 492.7 2 39 6 1552.2 $(9/2)^+$ E1 0.01058 15 $%I\gamma = 3.3 \ 10$ $1059.5 (7/2)^{-}$ $\alpha(K) \exp = 0.010 4$ $\alpha(K) = 0.00871 \ 12; \ \alpha(L) = 0.001433 \ 20;$ $\alpha(M)=0.0003355$ $\alpha(N) = 8.57 \times 10^{-5}$ 12; $\alpha(O) = 1.768 \times 10^{-5}$ 25; $\alpha(P)=2.196\times10^{-6}$ 31 537.0 2 37 *3* $(9/2)^+$ $\%I\gamma = 3.2.8$ 1552.2 $1015.2 (11/2)^+$ M1+E2 3.58 17 0.0328 7 α (K)exp=0.024 3 $\alpha(K)=0.0240$ 6; $\alpha(L)=0.00665$ 11;

S

From ENSDF

²⁰¹₈₄Po₁₁₇-3

$\frac{201 \text{At} \varepsilon \text{decay}}{2010 \text{De04}} \text{ (continued)}$										
$\gamma(^{201}\text{Po})$ (continued)										
E_{γ}^{\dagger}	$I_{\gamma}^{\dagger a}$	E _i (level)	${ m J}^{\pi}_i$	\mathbf{E}_{f}	J_f^π	Mult. [#]	$\delta^{@}$	α &	$I_{(\gamma+ce)}^{a}$	Comments
559.1 2	17.8 <i>16</i>	1574.3	(9/2,11/2)+	1015.2	(11/2)+	M1+E2	1.78 20	0.0415 <i>33</i>		$\alpha(M)=0.001647 \ 27$ $\alpha(N)=0.000423 \ 7; \ \alpha(O)=8.53\times10^{-5} \ 14;$ $\alpha(P)=9.74\times10^{-6} \ 17$ %Iy=1.5 4 $\alpha(K)\exp=0.032 \ 5$ $\alpha(K)=0.0320 \ 28; \ \alpha(L)=0.0072 \ 4; \ \alpha(M)=0.00176 \ 9$
583.3 2	56 <i>5</i>	1006.7?	(11/2)+	423.4	13/2+	M1+E2	2.61 17	0.0304 11		$\alpha(N)=0.000453 \ 22; \ \alpha(O)=9.3\times10^{-5} \ 5; \alpha(P)=1.11\times10^{-5} \ 7 \%I\gamma=4.8 \ 12 \alpha(K)=0.0230 \ 9; \ \alpha(L)=0.00563 \ 14; \ \alpha(M)=0.001379 32 $
591.8 2	100	1015.2	(11/2)+	423.4	13/2+	M1+E2	2.67 18	0.0291 <i>10</i>		$\alpha(N)=0.000354 \ 8; \ \alpha(O)=7.20\times10^{-5} \ 17; \alpha(P)=8.44\times10^{-6} \ 23 \% Iy=8.5 \ 21 \alpha(K)=0.0220 \ 9; \ \alpha(L)=0.00537 \ 13; \ \alpha(M)=0.001315 31$
616.1 2	18.6 <i>16</i>	621.66	(7/2)-	5.61	5/2-	M1+E2	1.72 20	0.0334 27		$\alpha(N)=0.000338 \ 8; \ \alpha(O)=6.87\times10^{-5} \ 17; \alpha(P)=8.06\times10^{-6} \ 22 \%I\gamma=1.6 \ 4 \alpha(K)=0.0260 \ 23; \ \alpha(L)=0.00561 \ 32; \ \alpha(M)=0.00136 7 $
(617.7 5)		623.3?	(5/2 ⁻)	5.61	5/2-				6.45 60	$\alpha(N)=0.000349 \ 19; \ \alpha(O)=7.1\times10^{-5} \ 4; \\ \alpha(P)=8.7\times10^{-6} \ 6 \\ \alpha(K)=0.037 \ 23; \ \alpha(L)=0.0071 \ 31; \ \alpha(M)=0.0017 \ 7 \\ \alpha(N)=4.4\times10^{-4} \ 18; \ \alpha(O)=9.E-5 \ 4; \ \alpha(P)=1.1\times10^{-5} \\ 5 \\ 5 \\ 5 \\ 5 \\ 5 \\ 5 \\ 5 \\ 5 \\ 5 \\$
621.6 2	10.5 9	621.66	(7/2)-	0.0	3/2-	(E2)		0.01950 27		E _{γ} : From level energy difference. I _($\gamma+ce$) : Taken as half of I($\gamma+ce$)(623.3–keV level)=12.9 <i>12</i> , determined from intensity balance. %I γ =0.90 <i>23</i> α (K)exp=0.019 <i>3</i> α (K)=0.01430 <i>20</i> ; α (L)=0.00393 <i>6</i> ; α (M)=0.000972 <i>14</i>
(623.3 5)		623.3?	(5/2 ⁻)	0.0	3/2-				6.45 60	$\alpha(N)=0.0002497 \ 35; \ \alpha(O)=5.03\times10^{-5} \ 7; \\ \alpha(P)=5.74\times10^{-6} \ 8 \\ \alpha(K)=0.036 \ 22; \ \alpha(L)=0.0069 \ 30; \ \alpha(M)=0.0017 \ 7 \\ \alpha(N)=4.3\times10^{-4} \ 18; \ \alpha(O)=9.E-5 \ 4; \ \alpha(P)=1.1\times10^{-5} \\ \alpha(P)=1.1\times10^{-5} \ 10^{$

4

 $^{201}_{84}\mathrm{Po}_{117}\text{-}4$

L

					²⁰¹ A	t ε decay	2010De04 (co	ontinued)
						γ (²⁰¹ P	Po) (continued)	
E_{γ}^{\dagger}	$I_{\gamma}^{\dagger a}$	E _i (level)	\mathbf{J}_i^{π}	\mathbf{E}_{f}	J_f^π	Mult. [#]	α ^{&}	Comments
								 5 E_γ: From level energy difference. I_(γ+ce): Taken as half of I(γ+ce)(623.3-keV level)=12.9 <i>12</i>, determined from intensity balance.
628.6 2	14.1 20	2202.9	(9/2,11/2)+	1574.3	(9/2,11/2)+	E2	0.01903 27	% $I_{\gamma}=1.21 \ 34$ $\alpha(K)\exp=0.014 \ 3$ $\alpha(K)=0.01399 \ 20; \ \alpha(L)=0.00381 \ 5; \ \alpha(M)=0.000941 \ 13$ $\alpha(N)=0.0002418 \ 34; \ \alpha(O)=4.88\times10^{-5} \ 7; \ \alpha(P)=5.58\times10^{-6} \ 8$
716.6 4	7.1 6	722.44	7/2-	5.61	5/2-	[M1,E2]	0.032 18	$\alpha(K) = 0.026175; \alpha(L) = 0.0048 21; \alpha(M) = 0.0011 5$ $\alpha(K) = 0.026175; \alpha(L) = 0.0048 21; \alpha(M) = 0.0011 5$ $\alpha(N) = 2.9 \times 10^{-4} 12; \alpha(Q) = 6.1 \times 10^{-5} 27; \alpha(P) = 8.5 - 6.4$
722.5 2	34 <i>3</i>	722.44	7/2-	0.0	3/2-	E2	0.01413 20	$\begin{aligned} &\alpha(\Lambda) = 2.9.7 \\ &\alpha(K) = 2.9.7 \\ &\alpha(K) = 0.008 \ I \\ &\alpha(K) = 0.01068 \ I5; \ \alpha(L) = 0.00261 \ 4; \ \alpha(M) = 0.000639 \ 9 \\ &\alpha(N) = 0.0001642 \ 23; \ \alpha(O) = 3.33 \times 10^{-5} \ 5; \ \alpha(P) = 3.90 \times 10^{-6} \ 5 \end{aligned}$
758.3 [‡] 2	23.4 20	758.30?	(7/2) ⁻	0.0	3/2-	E2	0.01278 18	% $I\gamma$ =2.0 5 α (K)exp=0.007 1 α (K)=0.00973 14; α (L)=0.002303 32; α (M)=0.000562 8 α (N)=0.0001444 20; α (O)=2.94×10 ⁻⁵ 4; α (P)=3.46×10 ⁻⁶ 5
760.7 [‡] 2	69 6	766.3?	(9/2) ⁻	5.61	5/2-	E2	0.01269 18	% $I\gamma$ =5.9 <i>15</i> α (K)exp=0.009 <i>1</i> α (K)=0.00968 <i>14</i> ; α (L)=0.002285 <i>32</i> ; α (M)=0.000558 <i>8</i> α (N)=0.0001432 <i>20</i> ; α (O)=2.91×10 ⁻⁵ <i>4</i> ; α (P)=3.43×10 ⁻⁶ <i>5</i>

[†] From 2010De04, unless otherwise stated. [‡] Placement in the decay scheme is not unambiguous. [#] From multiple decay branches and the comparison of $\alpha(K)exp$ (2010De04) with theoretical values.

[@] From $\alpha(K)$ exp and the briccmixing program.

S

[&] Additional information 1. ^{*a*} For absolute intensity per 100 decays, multiply by 0.086 21.

^b Placement of transition in the level scheme is uncertain. ^x γ ray not placed in level scheme.

 $^{201}_{84} \mathrm{Po}_{117}\text{-}5$

²⁰¹At ε decay **2010De04**

