Adopted Levels, Gammas

		Туре	•	Author	History Citation	Literature Cutoff Date					
	Full Evaluation			F. G. Kondev	NDS 187,355 (2023)	20-Sep-2022					
$Q(\beta^{-}) = -5732 \ 10; \ S(n) = 7651 \ 9; \ S(p) = 3440 \ 23; \ Q(\alpha) = 5799.3 \ 17 $ 2021Wa16											
					²⁰¹ Po Levels						
				Cross R	eference (XREF) Flags						
				A 201 B 201 C 205 D 194	Po IT decay (8.96 min) At ε decay Rn α decay Pt(¹² C,5n γ)						
E(level) [†]	J^{π}	T _{1/2}	XREF			Comments					
0@	3/2-	15.50 min 22	ABCD	%α=1.13 3; %ε+%β ⁺ =98.87 3 μ=-0.98 7 (2014Se07,2019StZV) Q=+0.10 10 (2014Se07,2021StZZ) δ(r ²)(²⁰¹ Po, ²¹⁰ Po)=-0.510 fm ² 13 (2013Se03). (β ₂) ^{1/2} =0.10 (2013Se03,2014Se07). %α is unweighted average of %α=1.15% 1 (1967Le21) and 1.10% 4 (1993Wa04). Other: 1.6% 3 (1971Ho01). %ε+%β ⁺ has not been directly measured. J ^π : atomic beam (1962Ax02) and μ. T _{1/2} : Weighted average of 15.3 min 8 (1963Ho18), 15.8 min 3 (1967Le08), 15.1 min 3 (1967Ti04), 16.0 min 15 (1968Go12), 15 min 3 (1970Jo26), 15.2 min 3 (1970Ra14), 15.5 min 6 (1970DaZM), 15.1 min 4 (1971Ho01), 17.5 min 5 (1964Br23) and 14.5 min 10 (1976Ko13). Eα=5683.3 keV 16, recommended by 1991Ry01. Values from individual measurements are 5674 keV 9 (1963Ho18), 5670 keV 10 (1967Le08), 5677 keV 5 (1967Tr06), 5684 keV 6 (1967Ti04), 5684 keV 2 (1968Go12), 5689 keV 10 (1970Jo26), 5680 keV 10 (1970DaZM) and 5685 keV 4 (1970Ra14). μ,Q: hyperfine structure studies using in-source resonance ionization spectroscopy at CERN-ISOLDE facility (2014Se07). Total (statistical uncertainties=0.010 for μ and 0.08 for O, and systematic) uncertainties are given. Others: μ=0.94 8							
5.61 [‡] <i>13</i> 142 [#] 3	5/2 ⁻ (1/2 ⁻)		ABCD C	J ^{π} : Favored α -decay from the ²⁰⁵ Rn g.s. ($J^{\pi}=5/2^{-}$). E(level): From ²⁰⁵ Rn α decay.							
0-				J ^{<i>π</i>} : Unfavore neighborin	ed α -decay from ²⁰⁵ Rn g ng nuclei.	s.s. $(J^{\pi}=5/2^{-})$. Systematics of structures in					
423.41 [∞] 22	13/2+	8.96 min <i>12</i>	AB D	%IT≈42.6; % μ =-1.00 7 (? Q=+1.3 4 (2 $\delta \nu$ (²⁰¹ Po, ¹⁹⁶] (2013Se03 (β_2^2) ^{1/2} =0.12 %IT, % α , an %IT/(% ϵ + γ -ray inter and 1.9% E(level): Ott J ^π : 417.8γ M ¹⁹⁷ Pb. T _{1/2} : Weight		$(2^{01}\text{Po}, 2^{10}\text{Po}) = -0.452 \text{ fm}^2 13$ $(2^{01}\text{Po}, 2^{10}\text{Po}) = -0.452 \text{ fm}^2 13$ $(2^{00}\text{Po}, 2^{10}\text{Po}) = -0.452 \text{ fm}^2 13$ $(2^{00}\text{Po}) = -0.$					

Continued on next page (footnotes at end of table)

Adopted Levels, Gammas (continued)

²⁰¹Po Levels (continued)

E(level) [†]	\mathbf{J}^{π}	XREF	Comments					
			4 (1967Ti04), 10.0 min 15 (1968Go12), 9 min 3 (1970Jo26), 8.8 min 4 (1970Ra14), 8.9					
			min 8 (1970DaZM), 9.0 min 3 (1976Ko13) and 9.0 min 3 (1986Br28).					
			$E\alpha$ =5786.0 keV 16 recommended by 1991Ry01. Values from individual measurements are					
			5780 keV 7 (1963Ho18), 5770 keV 10 (1967Le08), 5780 keV 5 (1967Tr06), 5788 keV					
			7 (1967/104), 5787 keV 2 (1968Go12), 5778 keV 10 (1970Jo26), 5780 keV 10					
			(19/0DaZM) and $5/86$ KeV 4 (19/0Ka14).					
			μ ,Q. hyperfine structure studies using in-source resonance formation spectroscopy at CERN-ISOI DE facility (2014Se07). Total (statistical uncertainties=0.055 for μ and					
			0.20 for Ω and systematic) uncertainties are given. Others: $\mu = 1.00.8$ (1991Wo04 using					
			the static nuclear orientation technique), 0.99 <i>11</i> (1988Wo12).					
621.66 16	$(7/2)^{-}$	В	J^{π} : 616.1 γ M1+E2 to 5/2 ⁻ , 621.6 γ (E2) to 3/2 ⁻ ; direct feeding in ²⁰¹ At ε decay					
			$(J^{\pi} = (9/2^{-})).$					
623.3? <i>3</i>	$(5/2^{-})$	В	J^{π} : 617.7 γ to 5/2 ⁻ , 623.3 γ to 3/2 ⁻ ; no direct feeding in ²⁰¹ At ε decay ($J^{\pi}=(9/2^{-})$).					
722.44 18	$7/2^{-}$	В	J ^{π} : 722.5 γ E2 to 3/2 ⁻ ; direct feeding in ²⁰¹ At ε decay (J ^{π} =(9/2 ⁻)).					
758.30? 20	$(7/2)^{-}$	В	J ^{π} : 758.3 γ E2 to 3/2 ⁻ ; direct feeding in ²⁰¹ At ε decay (J ^{π} =(9/2 ⁻)).					
766.31? 24	$(9/2)^{-}$	В	J ^{π} : 760.7 γ E2 to 5/2 ⁻ ; direct feeding in ²⁰¹ At ε decay (J ^{π} =(9/2 ⁻)).					
1006.7? <i>3</i>	$(11/2)^+$	В	J ^{π} : 583.3 γ M1+E2 to 13/2 ⁺ ; direct feeding in ²⁰¹ At ε decay (J ^{π} =(9/2 ⁻)).					
1015.2 3	$(11/2)^+$	В	J ^{π} : 591.8 γ M1+E2 to 13/2 ⁺ ; direct feeding in ²⁰¹ At ε decay (J ^{π} =(9/2 ⁻)).					
1037.0 ^a 11	$17/2^{+}$	D	J^{π} : 613.6 γ (E2) to 13/2 ⁺ .					
1059.5 <i>3</i>	$(7/2)^{-}$	В	J^{π} : 436.2 γ M1+E2 to (5/2 ⁻).					
1124.8? 5	(7/2,9/2,11/2)	В	J ^{π} : 358.5 γ to (9/2) ⁻ ; direct feeding in ²⁰¹ At ε decay (J ^{π} =(9/2 ⁻)).					
1242.9? 5	(7/2,9/2,11/2)	В	J ^{π} : 476.6 γ to (9/2) ⁻ ; direct feeding in ²⁰¹ At ε decay (J ^{π} =(9/2 ⁻)).					
1552.2 3	$(9/2)^+$	В	J ^π : 492.7γ E1 to (7/2) ⁻ , 537γ M1+E2 to (11/2) ⁺ ; direct feeding in ²⁰¹ At ε decay $(J^{\pi}=(9/2^{-}))$.					
1574.3 <i>4</i>	$(9/2, 11/2)^+$	В	J ^π : 559.1γ M1+E2 to (11/2) ⁺ ; direct feeding in ²⁰¹ At ε decay ($J^{\pi} = (9/2^{-})$).					
1593.6 ^b 15	$21/2^{+}$	D	J^{π} : 556.6 γ E2 to 17/2 ⁺ .					
1912.3 ^c 18	$25/2^+$	D	J^{π} : 318.7 γ E2 to 21/2 ⁺ .					
2044.0 4	$(9/2)^+$	В	J ^{π} : 491.8 γ E2 to (9/2) ⁺ ; direct feeding in ²⁰¹ At ε decay (J ^{π} =(9/2 ⁻)).					
2101.6 21		D						
2133.8 21	$25/2^+,(29/2^+)$	D	J^{π} : 221.5 γ D,Q to 25/2 ⁺ .					
2202.9 4	$(9/2,11/2)^+$	В	J ^{π} : 628.6 γ E2 to (9/2,11/2) ⁺ ; direct feeding in ²⁰¹ At ε decay (J ^{π} =(9/2 ⁻)).					
2239.6 23	(27/2)	D						
2332.2 21	(27/2)	D	$J^{*}: 419.9\gamma$ D to $25/2^{+}$.					
2347.0 18	$(27/2^{+})$	ע	I^{π} : $AA2 A_{22}$ (M1) to $25/2^+$					
2463 9 21	(21/2)	ם ח	$J : ++2.+ \gamma$ (1411) to $25/2$.					
2570.2 21	$(27/2^+)$	D	J^{π} : 657.9 γ (M1) to 25/2 ⁺ .					
2627.5 23	$(29/2^+)$	D	J^{π} : 272.8 γ (M1) to (27/2 ⁺).					
2770.1 21		D						
2979.0 <i>23</i>	27/2+,31/2+	D	J^{π} : 408.8 γ M1,E2 to (27/2 ⁺).					
3039.6 23		D						
3196.5 23	(29/2)	D	J^{π} : 626.3 γ D to (27/2 ⁺).					
3210.3 23	(31/2))	D	J [*] : 640.1 γ E2 to (27/2 ⁺).					
3333.1 23 3710 1 25	$(35/2^+)$	ע	I^{π} , 400 80 to (31/2 ⁺)					
41532 3	(33/2)	ע	$J : \frac{1}{77.07} \text{ to } (31/2).$					
1100.0		-						

[†] From a least-squares fit to E γ . Δ E γ =0.5 keV is assumed for E γ 's without uncertainties. [‡] Configuration= $\nu f_{5/2}^{-1}$. [#] Configuration= $\nu p_{1/2}^{-1}$. The assignment is tentative. [@] Configuration= $\nu p_{3/2}^{-1}$.

& Configuration= $\nu i_{13/2}^{-1}$.

Continued on next page (footnotes at end of table)

Adopted Levels, Gammas (continued)

²⁰¹Po Levels (continued)

- ^{*a*} Configuration= ν ($i_{13/2}^{-1}$) \otimes 2⁺. ^{*b*} Configuration= ν ($i_{13/2}^{-1}$) \otimes 4⁺. ^{*c*} Possibly a mixture between configuration= ν ($i_{13/2}^{-1}$) \otimes 6⁺ and configuration= ν ($i_{13/2}^{-1}$) π ($h_{9/2}^{+2}$)₈₊.

						Adopted	Levels, Ga	mmas (contin	ued)
$\underline{\gamma(^{201}\text{Po})}$									
E _i (level)	\mathbf{J}_i^{π}	${\rm E}_{\gamma}^{\dagger}$	I_{γ}^{\dagger}	E_f	\mathbf{J}_f^{π}	Mult. [#]	δ	α [@]	Comments
5.61 423.41	5/2 ⁻ 13/2 ⁺	(5.61 <i>13</i>) 417.8 <i>2</i>	100 100	0 5.61	3/2 ⁻ 5/2 ⁻	M4		4.84 7	E _γ : From level energy difference. B(M4)(W.u.)≈1.8 α (K)=2.74 4; α (L)=1.542 22; α (M)=0.424 6 α (N)=0.1116 16; α (O)=0.02250 32; α (P)=0.00253 4 E _γ : Weighted average of 418.5 keV 6 (1976Ko13), 417.6 keV 3 (1971Jo19) an 417.8 keV 6 (1986Br28). Mult.: α (K)exp=2.49 32, K/L=1.8 2, L/M=2.5 3 (1986Br28);
621.66	(7/2)-	616.1 2	100 9	5.61	5/2-	M1+E2	1.72 20	0.0334 27	K/L=2.0 3 (1976Ko13), 1.6 2 (1971Jo19). α (K)=0.0260 23; α (L)=0.00561 32; α (M)=0.00136 7 α (N)=0.000349 19; α (O)=7.1×10 ⁻⁵ 4; α (P)=8.7×10 ⁻⁶ 6
		621.6 2	57 5	0	3/2-	(E2)		0.01950 27	Mult., δ : α (K)exp=0.026 4 in ²⁰¹ At ε decay (2010De04). α (K)=0.01430 20; α (L)=0.00393 6; α (M)=0.000972 14 α (N)=0.0002497 35; α (O)=5.03×10 ⁻⁵ 7; α (P)=5.74×10 ⁻⁶ 8
623.3?	(5/2-)	(617.9 3)		5.61	5/2-				Mult.: $\alpha(K)\exp=0.019 \ 3 \text{ in } {}^{201}\text{At } \varepsilon \text{ decay } (2010\text{De04}).$ $\alpha(K)=0.037 \ 23; \ \alpha(L)=0.0071 \ 31; \ \alpha(M)=0.0017 \ 7 \ \alpha(N)=4.4\times10^{-4} \ 18; \ \alpha(O)=9.\text{E}-5 \ 4; \ \alpha(P)=1.1\times10^{-5} \ 5$
		(623.3 3)		0	3/2-				E _γ : From level energy difference. α (K)=0.036 22; α (L)=0.0069 30; α (M)=0.0017 7 α (N)=4.3×10 ⁻⁴ 18; α (O)=9.E-5 4; α (P)=1.1×10 ⁻⁵ 5
722.44	7/2-	716.6 4	20.9 18	5.61	5/2-	[M1,E2]		0.032 18	E _γ : From level energy difference. α (K)=0.026 <i>15</i> ; α (L)=0.0048 <i>21</i> ; α (M)=0.0011 <i>5</i> α (N)=2.9×10 ⁻⁴ <i>12</i> ; α (O)=6.1×10 ⁻⁵ <i>27</i> ; α (P)=8.E-6 <i>4</i>
		722.5 2	100 9	0	3/2-	E2		0.01413 20	α (K)=0.01068 <i>15</i> ; α (L)=0.00261 <i>4</i> ; α (M)=0.000639 <i>9</i> α (N)=0.0001642 <i>23</i> ; α (O)=3.33×10 ⁻⁵ <i>5</i> ; α (P)=3.90×10 ⁻⁶ <i>5</i>
758.30?	(7/2)-	758.3 2	100	0	3/2-	E2		0.01278 18	Mult.: $\alpha(K)\exp=0.008 \ l \text{ in } {}^{201}\text{At } \varepsilon \text{ decay } (2010\text{De04}).$ $\alpha(K)=0.00973 \ 14; \ \alpha(L)=0.002303 \ 32; \ \alpha(M)=0.000562 \ 8$ $\alpha(N)=0.0001444 \ 20; \ \alpha(O)=2.94\times10^{-5} \ 4; \ \alpha(P)=3.46\times10^{-6} \ 5$
766.31?	(9/2)-	760.7 2	100	5.61	5/2-	E2		0.01269 18	Mult.: $\alpha(K)\exp=0.007 \ 1 \text{ in } {}^{201}\text{At } \varepsilon \text{ decay } (2010\text{De04}).$ $\alpha(K)=0.00968 \ 14; \ \alpha(L)=0.002285 \ 32; \ \alpha(M)=0.000558 \ 8 \ \alpha(N)=0.0001432 \ 20; \ \alpha(O)=2.91\times10^{-5} \ 4; \ \alpha(P)=3.43\times10^{-6} \ 5 \ 10^{-6} \ 10^{-6} \ 5 \ 10^{-6} \ 10^{-6} \ 5 \ 10^{-6} \ 10^{$
1006.7?	(11/2)+	583.3 2	100	423.41	13/2+	M1+E2	2.61 17	0.0304 11	Mult.: $\alpha(K)\exp=0.009 \ I$ in ²⁰¹ At ε decay (2010De04). $\alpha(K)=0.0230 \ 9$; $\alpha(L)=0.00563 \ I4$; $\alpha(M)=0.001379 \ 32$ $\alpha(N)=0.000354 \ 8$; $\alpha(O)=7.20\times10^{-5} \ I7$; $\alpha(P)=8.44\times10^{-6} \ 23$
1015.2	(11/2)+	591.8 2	100	423.41	13/2+	M1+E2	2.67 18	0.0291 10	Mult., δ : α (K)exp=0.023 <i>3</i> in ²⁰¹ At ε decay (2010De04). α (K)=0.0220 <i>9</i> ; α (L)=0.00537 <i>13</i> ; α (M)=0.001315 <i>31</i> α (N)=0.000338 <i>8</i> ; α (O)=6.87×10 ⁻⁵ <i>17</i> ; α (P)=8.06×10 ⁻⁶ 22 Mult δ : α (K)exp=0.022 3 in ²⁰¹ At ε decay (2010De04)
1037.0	17/2+	613.6 [‡]	100‡	423.41	13/2+	(E2)		0.02007 28	$\alpha(K)=0.01467\ 21;\ \alpha(L)=0.00408\ 6;\ \alpha(M)=0.001009\ 14$

 $^{201}_{84}\mathrm{Po}_{117}\text{-}4$

L

Adopted Levels, Gammas (continued)										
γ ⁽²⁰¹ Po) (continued)										
E _i (level)	\mathbf{J}_i^π	E_{γ}^{\dagger}	I_{γ}^{\dagger}	E_f	J_f^π	Mult. [#]	δ	α [@]	Comments	
									α (N)=0.000259 4; α (O)=5.22×10 ⁻⁵ 7; α (P)=5.95×10 ⁻⁶ 8 Mult.: A ₂ =0.5 2, A ₄ =0.1 3, but values are distorted since the 613.6 γ is situated on the slope of both the neutron bump and the stronger 611.2 γ in ¹⁹⁴ Pt(¹² C,5n γ) (1985We05).	
1059.5	(7/2)-	436.2 2	100	623.3?	(5/2 ⁻)	M1+E2	0.93 23	0.119 <i>19</i>	$\alpha(K)=0.094 \ 16; \ \alpha(L)=0.0193 \ 19; \ \alpha(M)=0.0046 \ 4$ $\alpha(N)=0.00119 \ 11; \ \alpha(O)=0.000246 \ 24; \ \alpha(P)=3.0\times10^{-5} \ 4$ Mult $\delta; \ \alpha(K) \exp = 0.004 \ 14 \ ip \ 2^{01} \ \Delta t \ c \ decov \ (2010 \ Dec)$	
1124.8? 1242.9?	(7/2,9/2,11/2) (7/2,9/2,11/2)	358.5 <i>4</i> 476.6 <i>4</i>	100 100	766.31? 766.31?	$(9/2)^{-}$ $(9/2)^{-}$				Mult., $0. \alpha(K) \exp[-0.094 \ 14 \ hr = At \epsilon \ decay (2010De04).$	
1552.2	$(9/2)^+$	492.7 2	100 15	1059.5	(7/2)-	E1		0.01058 15	$ \begin{array}{l} \alpha(\mathrm{K}) = 0.00871 \ 12; \ \alpha(\mathrm{L}) = 0.001433 \ 20; \ \alpha(\mathrm{M}) = 0.000335 \ 5 \\ \alpha(\mathrm{N}) = 8.57 \times 10^{-5} \ 12; \ \alpha(\mathrm{O}) = 1.768 \times 10^{-5} \ 25; \ \alpha(\mathrm{P}) = 2.196 \times 10^{-6} \\ 31 \end{array} $	
		537.0 2	95 8	1015.2	(11/2)+	M1+E2	3.58 17	0.0328 7	Mult.: $\alpha(K)\exp=0.010 4$ in ²⁰¹ At ε decay (2010De04). $\alpha(K)=0.0240 6$; $\alpha(L)=0.00665 11$; $\alpha(M)=0.001647 27$ $\alpha(N)=0.000423 7$; $\alpha(O)=8.53\times10^{-5} 14$; $\alpha(P)=9.74\times10^{-6} 17$ Mult δ : $\alpha(K)\exp=0.024 3$ in ²⁰¹ At ε decay (2010De04)	
1574.3	(9/2,11/2)+	559.1 2	100	1015.2	(11/2)+	M1+E2	1.78 20	0.0415 33	$\alpha(K)=0.0320\ 28;\ \alpha(L)=0.0072\ 4;\ \alpha(M)=0.00176\ 9$ $\alpha(N)=0.000453\ 22;\ \alpha(O)=9.3\times10^{-5}\ 5;\ \alpha(P)=1.11\times10^{-5}\ 7$ Mult. $\delta;\ \alpha(K)\exp=0.032\ 5\ in\ ^{201}At\ \varepsilon\ decay\ (2010De04).$	
1593.6	21/2+	556.6 [‡]	100 [‡]	1037.0	17/2+	E2		0.02499 <i>35</i>	$\alpha(K)=0.01781\ 25;\ \alpha(L)=0.00540\ 8;\ \alpha(M)=0.001347\ 19$ $\alpha(N)=0.000346\ 5;\ \alpha(O)=6.94\times10^{-5}\ 10;\ \alpha(P)=7.77\times10^{-6}\ 11$ Mult.: A ₂ =0.24 4, A ₄ =-0.01 5 in ¹⁹⁴ Pt(¹² C,5n\gamma) (1985We05).	
1912.3	25/2+	318.7 [‡]	100 [‡]	1593.6	21/2+	E2		0.1054 15	α (K)=0.0585 8; α (L)=0.0350 5; α (M)=0.00907 13 α (N)=0.002329 33; α (O)=0.000455 6; α (P)=4.60×10 ⁻⁵ 6 Mult.: A ₂ =0.22 1, A ₄ =-0.05 1 in ¹⁹⁴ Pt(¹² C,5n γ) (1985We05)	
2044.0	(9/2)+	491.8 2	100	1552.2	(9/2)+	E2		0.0334 5	$\alpha(K)=0.02292 \ 32; \ \alpha(L)=0.00788 \ 11; \ \alpha(M)=0.001982 \ 28 \ \alpha(N)=0.000509 \ 7; \ \alpha(O)=0.0001015 \ 14; \ \alpha(P)=1.111\times10^{-5} \ 16 \ Mult.; \ \alpha(K)exp=0.023 \ 7 \ in \ ^{201}At \ \varepsilon \ decay \ (2010De04).$	
2101.6		189.3	100‡	1912.3	$25/2^{+}$	D.0			Mult.: $A_2=0.1$ 4. $A_4=0.2$ 3 in 194 Pt(12 C.5ny) (1985We05).	
2133.8	25/2+,(29/2+)	221.5‡	100‡	1912.3	25/2+	D,Q			$\alpha(K)=0.6 5; \alpha(L)=0.162 13; \alpha(M)=0.0402 10; \alpha(N+)=0.0135 4$ Mult.: A ₂ =0.10 6, A ₄ =-0.11 9 in ¹⁹⁴ Pt(¹² C,5n\gamma) (1985We05).	

²⁰¹₈₄Po₁₁₇-5

L

	Adopted Levels, Gammas (continued)									
	γ ⁽²⁰¹ Po) (continued)									
E _i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\dagger}	$\mathbf{E}_f \qquad \mathbf{J}_f^{\pi}$	Mult. [#]	α [@]	Comments			
2202.9	(9/2,11/2)+	628.6 2	100	1574.3 (9/2,11/2)+	E2	0.01903 27	$\alpha(K)=0.01399\ 20;\ \alpha(L)=0.00381\ 5;\ \alpha(M)=0.000941\ 13$ $\alpha(N)=0.0002418\ 34;\ \alpha(O)=4.88\times10^{-5}\ 7;\ \alpha(P)=5.58\times10^{-6}\ 8$ Mult.: $\alpha(K)exp=0.014\ 3$ in ²⁰¹ At ε decay (2010De04).			
2239.6		138.0 [‡]	100‡	2101.6						
2332.2	(27/2)	419.9 [‡]	100‡	1912.3 25/2+	D		Mult.: $A_2 = -0.2 \ 3$, $A_4 = -0.1 \ 4$ in 194 Pt(12 C, $5n\gamma$) (1985We05).			
2347.6		754.0 [‡]	100‡	1593.6 21/2+						
2354.7	(27/2 ⁺)	442.4 [‡]	100 [‡]	1912.3 25/2+	(M1)	0.1766 25	α (K)=0.1439 20; α (L)=0.02492 35; α (M)=0.00587 8 α (N)=0.001510 21; α (O)=0.000316 4; α (P)=4.09×10 ⁻⁵ 6 Mult.: A ₂ =-0.05 7, A ₄ =0.27 9 in ¹⁹⁴ Pt(¹² C,5n γ) (1985We05).			
2463.9		551.6 [‡]	100‡	1912.3 25/2+						
2570.2	(27/2 ⁺)	657.9 [‡]	100‡	1912.3 25/2+	(M1)	0.0618 9	α (K)=0.0505 7; α (L)=0.00864 12; α (M)=0.002030 28 α (N)=0.000522 7; α (O)=0.0001094 15; α (P)=1.416×10 ⁻⁵ 20 Mult.: A ₂ =-0.30 18, A ₄ =-0.2 2 in ¹⁹⁴ Pt(¹² C,5n γ) (1985We05).			
2627.5	(29/2+)	272.8 [‡]	100 [‡]	2354.7 (27/2 ⁺)	(M1)	0.656 9	α (K)=0.534 7; α (L)=0.0934 13; α (M)=0.02203 31 α (N)=0.00567 8; α (O)=0.001187 17; α (P)=0.0001533 21 Mult.: A ₂ =0.3 3, A ₄ =0.4 3 in ¹⁹⁴ Pt(¹² C,5n γ) (1985We05).			
2770.1		857.8 [‡]	100‡	1912.3 25/2+						
2979.0	27/2+,31/2+	408.8 [‡]	100 [‡]	2570.2 (27/2 ⁺)	M1,E2	0.14 8	α (K)=0.11 7; α (L)=0.023 8; α (M)=0.0055 18 α (N)=0.0014 5; α (O)=2.9×10 ⁻⁴ 10; α (P)=3.5×10 ⁻⁵ 15 Mult.: A ₂ =0.5 2, A ₄ =0.1 3 in ¹⁹⁴ Pt(¹² C,5n γ) (1985We05).			
3039.6		905.8 [‡]	100‡	2133.8 25/2+,(29/2+)	D		Mult.: $A_2 = -0.1 \ 3$, $A_4 = -0.1 \ 5 \ in \ {}^{194}$ Pt(12 C, $5n\gamma$) (1985We05).			
3196.5	(29/2)	626.3 [‡]	100‡	2570.2 (27/2+)	D		Mult.: $A_2 = -0.36$ 7, $A_4 = -0.48$ 10 in ¹⁹⁴ Pt(¹² C, 5n γ) (1985We05).			
3210.3	(31/2+)	640.1 [‡]	100‡	2570.2 (27/2+)	(E2)	0.01829 26	α (K)=0.01350 <i>19</i> ; α (L)=0.00362 <i>5</i> ; α (M)=0.000894 <i>13</i> α (N)=0.0002296 <i>32</i> ; α (O)=4.64×10 ⁻⁵ <i>6</i> ; α (P)=5.31×10 ⁻⁶ <i>7</i> Mult.: A ₂ =0.44 <i>19</i> , A ₄ =-0.2 <i>3</i> in ¹⁹⁴ Pt(¹² C,5n γ) (1985We05).			
3333.1		354.1 [‡]	100‡	2979.0 27/2+,31/2+	D		Mult.: A ₂ =0.02 <i>16</i> , A ₄ =0.1 2 in 194 Pt(12 C,5n γ) (1985We05).			
3710.1	$(35/2^+)$	499.8 [‡]	100‡	3210.3 (31/2+)						
4153?		442.4 [‡]	100‡	3710.1 (35/2+)						

[†] From ²⁰¹At ε decay, unless otherwise stated. [‡] From ¹⁹⁴Pt(¹²C,5n γ). [#] From α (K)exp in ²⁰¹At ε decay and $\gamma(\theta)$ in ¹⁹⁴Pt(¹²C,5n γ), unless otherwise stated. [@] Additional information 1.

²⁰¹₈₄Po₁₁₇-6

6

Adopted Levels, Gammas

Level Scheme

Intensities: Relative photon branching from each level

²⁰¹₈₄Po₁₁₇

Adopted Levels, Gammas

Legend

Level Scheme (continued)

Intensities: Relative photon branching from each level

 $^{201}_{\ 84} \mathrm{Po}_{117}$