_

Adopted Levels, Gammas

History							
	Туре			Author C		Citation	Literature Cutoff Date
		Full	Evaluation	F. G. Kondev	v NDS	\$ 187,355 (2023)	20-Sep-2022
$Q(\beta^{-}) = -8348 \ 22; \ S(n) = 10620 \ 30; \ S(p) = -300 \ 11; \ Q(\alpha) = 7519 \ 4 \ 2021 Wa16$							
					²⁰¹ F	r Levels	
Cross Reference (XREF) Flags							
$\begin{array}{l} A \\ B \end{array} \begin{array}{c} 205 \text{Ac } \alpha \text{ decay} \\ (\text{HI}, \text{xn}\gamma) \end{array}$							
E(level)	\mathbf{J}^{π}	T _{1/2}	XREF	Comments			
0	9/2-	63 ms 4	AB	% <i>α</i> ≈100			
	J^{π} : Favored α decay to ¹⁹⁷ At ($J^{\pi} = (9/2^{-}), 2018Cu02$) and subsequent favored α),2018Cu02) and subsequent favored α
	decay to ¹²³ Bi $(J^{\mu}=9/2^{-},2016Ba42)$. T _{1/2} : Weighted average of 64 ms 3 (2014Ka23) 53 ms 4 (2005Uu02) and 67						
(2005De01). Others: 48 ms 15 (2014Ka25), 55 ms 4 (2005De02), and 67 ms (2005De01). E α 1=7369 keV 5 (2014Ka23); E α 1=7369 keV 8, correlated with E α 2(¹⁹⁷ At)=69 keV 6 (2005De02); E α 1=7379 keV 7 (2005De01); E α 1=7361 keV 7, correlated with E α 2(¹⁹⁷ At)=6956 keV 5 (1906En01); E α 1=7361 keV 7, correlated with E α 2(¹⁹⁷ At)=6956 keV 5 (1906En01); E α 1=7361 keV 7, correlated with E α 2(¹⁹⁷ At)=6956 keV 5 (1906En01); E α 1=7361 keV 7, correlated with E α 2(¹⁹⁷ At)=6956 keV 5 (1906En01); E α 1=7379 keV 7 (2005De01); E α 1=7361 keV 7, correlated with E α 2(¹⁹⁷ At)=6956 keV 5 (1906En01); E α 1=7361 keV 7, correlated with E α 2(¹⁹⁷ At)=6956 keV 5 (1906En01); E α 1=7361 keV 7, correlated with E α 2(¹⁹⁷ At)=6956 keV 5 (1906En01); E α 1=7361 keV 7, correlated with E α 2(¹⁹⁷ At)=6956 keV 5 (1906En01); E α 1=7361 keV 7, correlated with E α 2(¹⁹⁷ At)=6956 keV 5 (1906En01); E α 1=7361 keV 7, correlated with E α 2(¹⁹⁷ At)=6956 keV 5 (1906En01); E α 1=7361 keV 7, correlated with E α 2(¹⁹⁷ At)=6956 keV 5 (1906En01); E α 1=7361 keV 7, correlated with E α 2(¹⁹⁷ At)=6956 keV 5 (1906En01); E α 1=7361 keV 7, correlated with E α 2(¹⁹⁷ At)=6956 keV 5 (1906En01); E α 1=7361 keV 7, correlated with E α 2(¹⁹⁷ At)=6956 keV 5 (1906En01); E α 1=7361 keV 7, correlated with E α 2(¹⁹⁷ At)=6956 keV 5 (1906En01); E α 1=7361 keV 7, correlated with E α 2(¹⁹⁷ At)=6956 keV 5 (1906En01); E α 1=7361 keV 7, correlated with E α 2(¹⁹⁷ At)=6956 keV 5 (1906En01); E α 1=7361 keV 7, correlated with E α 2(¹⁹⁷ At)=6956 keV 5 (1906En01); E α 1=7361 keV 7, correlated with E α 2(¹⁹⁷ At)=6956 keV 5 (1906En01); E α 1=7361 keV 7, correlated with E α 2(¹⁹⁷ At)=6956 keV 5 (1906En01); E α 1=7361 keV 7, correlated with E α 2(¹⁹⁷ At)=6956 keV 5 (1906En01); E α 1=7361 keV 7, correlated with E α 2(¹⁹⁷ At)=6956 keV 5 (1906En01); E α 1=7361 keV 7, correlated with E α 2(¹⁹⁷ At)=6956 keV 5 (1906En01); E α 2(¹⁹⁷ At)=6956 keV 5 (1906En							(Ew03) and 69 ms $+16-11$ (1996En01).
							369 keV 8, correlated with $E\alpha 2(^{197}At)=6959$
							/ (2005De01); $E\alpha I = 7361$ keV /, correlated Ep01): $E\alpha I = 7388$ keV 15 (1980Ew03)
			configuration: πh_{col}^{+1} .				
129 10	$0 1/2^+$ 37 ms +14-8 B $\%\alpha = 100$						
E(level): From 2021Ko07.							+ 2019Cu02) and subsequent forward a
				J : Favored α decay to At $(J^{*}=1/2, 2018\text{Cu02})$ and subsequent favored α decay to ^{193m} Bi $(J^{\pi}=1/2^{+}, 2016\text{Ba42})$.			
				T _{1/2} : From α (t) in 2020Au01 (14 α 1- α 2- α 3 correlated events). Others: 8 ms			
				+12-3 (2014Ka23) and 19 ms $+19-6$ (2005Uu02).			
				$E\alpha_1 = 7457$ keV 9 (2020Au01); $E\alpha_1 = 7445$ keV 8 contenated with $E\alpha_2(337 \text{ At}) = 6098$ keV 16 (2014Ka23); $E\alpha_1 = 7454$ keV 8 (2005Uu02).			
				configuration: $\pi s_{1/2}^{-1}$.			
289.5 4	289.5 4 $13/2^+$ 720 ns 40 B %IT=100						
E(level): From E γ in 2020Au01. J ^{π} : 289.5 γ M2 to 9/2 ⁻ ; systematics in the region. T _{1/2} : From ce(t) in 2020Au01. Others: 0.7 μ s +5–2 (2014Ka23).							he region.
							$0.7 \ \mu s + 5 - 2 \ (2014 \text{Ka} 23).$
configuration: $\pi i_{13/2}^{+1}$.							
$\gamma^{(201}\mathrm{Fr})$							
F.(level)	īπ	F. I	E E	π Mult	α^{\dagger}		Comments
$\frac{L_l(level)}{280.5}$	$\frac{J_i}{12/2^+}$	$\frac{L_{\gamma}}{289.5.4}$	$\frac{p_{f}}{p_{f}}$ $\frac{L_{f}}{p_{f}}$ $\frac{p_{f}}{p_{f}}$	$\frac{f}{2}$ Matt.	2 (0 1		
289.5	13/2	289.5 4 10	0 0 9/	2 M2 .	2.60 4	B(M2)(w.u.)=0. $\alpha(K)=1.899\ 28:$	$\alpha(L)=0.524 8; \alpha(M)=0.1321 20$
						$\alpha(N)=0.0350$ 5;	$\alpha(O)=0.00779 \ 12; \ \alpha(P)=0.001223 \ 18;$
						$\alpha(Q) = 6.33 \times 10^{-10}$)-5 9
						Mult.: From K/L	MN+=3.0 9 in 2020Au01.

[†] Additional information 1.

Adopted Levels, Gammas

Level Scheme

Intensities: Relative photon branching from each level

