Adopted Levels, Gammas

		Tuna	Author	History	Literature Cutoff Date
	-				
	1	Full Evaluation	F. G. Konc	lev NDS 187,355 (2023)	20-Sep-2022
$Q(\beta^{-}) = -4908 \ 13$	<i>B</i> ; S(n)=9130 <i>26</i>	5; S(p)=2467 <i>16</i> ; C	$Q(\alpha) = 4500$	6 2021Wa16	
				²⁰¹ Bi Levels	
			Cros	ss Reference (XREF) Flags	
		Δ	201 D o o do	cov (15.50 min) D 203r	$\Gamma(\alpha, 6n_2)$
		B	²⁰¹ Ροε de	cay (8.96 min) E^{196}	$P(1^{10}B, 5n\gamma)$
		c a	205 At α de	cay	
E(level) [†]	$J^{\pi \ddagger}$	T _{1/2}	XREF		Comments
0#	9/2-	103 min <i>3</i>	ABCDE	$\%\varepsilon + \%\beta^+ = 100$	
				μ =4.8 3 (1988Wo12,20198	StZV)
				J^{π} : Atomic beam (1960Li0	(3); favored α -decay from ²⁰⁵ At
				$(J^{*}=9/2, 2018Cu02); \mu$.	110 min 10 (1950Ne77) 111 min 4
				$(1956St05), 94 \min 3 (1)$	966KaZY), 96 min 12 (1970Jo26) and 106.2
				min 24 (1970DaZM).	
				μ : Using static nuclear original	entation with γ -ray detection technique.
846.35 ^w 18	1/2+	58.5 min 11	A	$\% \varepsilon + \% \beta^+ \approx 88.7; \% \text{IT} \approx 11.0$); %α≈0.3
				%IT from ²⁰¹ Po ε decay (I^{π} : 846 3 \times M4 to 9/2 ⁻	15.50 min), $\%\alpha$ from α HF syst.
				$T_{1/2}$: Weighted average of	62 min 8 (1950Ne77), 52 min 2 (1964Si11),
				59.1 min 6 (1966Ma51) E_{α} =5240 keV 6 (1966Ma5	and 57 min 5 (1970DaZM).
890.24 ^{&} 13	5/2-		А	J^{π} : 890.1 γ E2 to 9/2 ⁻ ; direction (15.50 min) I^{π} -2/2 ⁻)	ect ε feeding of this level in ²⁰¹ Po ε decay
004 22 & 12	$(7/2)^{-}$		٨	$(13.30 \text{ mm}, J^{-}=3/2)$. I^{π} : 004 2 M1 + E2 to $0/2^{-}$	201 parameters in 201 pa a decay (15.50 min
904.25 12	(7/2)		A	$J^{\pi} = 3/2^{-}$).	; observation in Pole decay (15.50 min,
964.40 ^{&} 15	$11/2^{-}$		ΒE	J^{π} : 964.3 γ M1(+E2) to 9/2	2 ⁻ .
967.49 ^{&} 17	13/2-		B DE	J^{π} : 967.4 γ E2 to 9/2 ⁻ .	
1086.21 ^{<i>a</i>} 18	3/2+	260 ps 30	Α	J^{π} : 195.9 γ E1 to 5/2 ⁻ ; 240	$0.1\gamma \text{ M1} + \text{E2 to } 1/2^+.$
				$T_{1/2}$: From 188.5ce(K)-23 (15.50 min)).	39.8ce(K)(Δ t) in 1986Be07 (²⁰¹ Po ε decay
1186.59 ^c 17	$(7/2)^{-}$		Α	J ^{π} : 296.1 γ to 5/2 ⁻ ; 1186.7	γ M1(+E2) to 9/2 ⁻ ; observation in ²⁰¹ Po ε
1074 45 10	(5/0)+			decay (15.50 min, $J^{\pi}=3$)	/2 ⁻).
1274.45 19	(5/2)		A	J^{π} : 188.6 γ M1+E2 to 3/2 ⁺	; 428.2 γ E2 to 1/2 ⁺ .
13/9.34° 24 1441 71 18	15/2 7/2 ⁻		A B DE	J [*] : 411.86 γ M1+E2 to 13/ I ^{π} : 535 5 γ M1 to 7/2 ⁻ : 55	$^{\prime}2$; 414.9 γ to 11/2 . 1.9 γ M1(+F2) to 5/2 ⁻ : 1442.2 γ M1(+F2) to
1111.71 10	172			9/2 ⁻ .	1.57 1.17 $1.12.27$ $1.11(1.12)$ 10
1470.87 22	(5/2,7/2)-		А	J ^{π} : 566.6 γ M1(+E2) to 7/2 level in ²⁰¹ Po ε decay (2 ⁻ , 1470.9 γ to 9/2 ⁻ . Direct ε feeding of this 15.50 min, $J^{\pi}=3/2^{-}$) excludes 9/2 ⁻ .
1474.6 ^b 3	17/2-		B DE	J^{π} : 96.25 γ M1(+E2) to 15	/2 ⁻ .
1483.54 24	$(3/2^{-})$		Α	J^{π} : 593.3 γ M1(+E2) to 5/2	2^{-} , 636.5 γ to $1/2^{+}$.
1501.89 17	$(13/2^+)$		В	J ^{μ} : 534.2 γ to 13/2 ⁻ , 537.5	γ to 11/2 ⁻ , 1502.4 γ (E3) to 9/2 ⁻ . Strong
1504 40 23			R	population of this level	in $-\infty$ Po ε decay (8.96 min, $J^{n}=13/2^{+}$).
1616.3 4	1/2+,3/2+,5/2+	F	A	J^{π} : 530.1 γ M1+E2 to 3/2 ⁺	
1665.1 <i>3</i>			В	, -,	
1719.15 22	$(11/2, 13/2)^+$		ΒE	J^{π} : 754.6 γ E1 to 11/2 ⁻ , 21	7.6 γ M1+E2 to (13/2 ⁺).

Continued on next page (footnotes at end of table)

Adopted Levels, Gammas (continued)

²⁰¹Bi Levels (continued)

E(level) [†]	Jπ‡	T _{1/2}	XREF	Comments
1746.5 ^d 4	17/2+	5.1 ns <i>13</i>	B DE	J^{π} : 271.91 γ E1 to 17/2 ⁻ . $\gamma(\theta)$'s are consistent with $\Delta J=0$, dipole
				transition. $T_{1/2}$: From $\gamma\gamma(t)$ in 1985Pi05 (¹⁹⁶ Pt(¹⁰ B,5n γ)) using the centroid shift analysis. Other: 9.6 ns 6 from $\gamma\gamma(t)$ in 1982Br21 (²⁰³ Tl(α ,6n γ)) using gates on 272 γ , 412 γ and 967 γ below the isomer (stop) and 186 γ above the isomer (start). The prompt response function is obtained using $\gamma\gamma(t)$ spectrum with gates on 412 γ and 967 γ (start) and 272 γ (stop). One should note, however, that there is a difference between the time walk for the 186 γ and 272 γ , and hence, this value may be not so accurate.
1762.9 <i>3</i> 1778.92 <i>22</i>	$(3/2^{-}, 5/2)$		B A	J^{π} : 874.6 γ to 7/2 ⁻ , 889.2 γ to 5/2 ⁻ ; direct feeding in ²⁰¹ Po ε decay
1817.86 22 1848.16 25	$1/2^+, 3/2, 5/2^+$ (5/2 ⁻)		A A	(15.50 min, $J^{\pi}=3/2^{-}$). J^{π} : 543.4 γ to 5/2 ⁺ , 731.7 γ to 3/2 ⁺ , 971.4 γ to 1/2 ⁺ . J^{π} : 944.2 γ to 7/2 ⁻ , 1848.0 γ to 9/2 ⁻ ; direct feeding in ²⁰¹ Po ε decay ($I^{\pi}=3/2^{-}$)
1858.02 24	3/2+		A	J^{π} : 771.8 γ E0+M1 to 3/2 ⁺ , 583.6 γ M1+E2 to 5/2 ⁺ .
1927.32 19	(5/2 ⁻)		A	J^{π} : 1023.0y to 7/2 ⁻ , 1927.5y to 9/2 ⁻ ; direct feeding in ²⁰¹ Po ε decay $(J^{\pi}=3/2^{-})$.
1932.3 ^e 4	21/2+	<40 ns	DE	J^{π} : 185.77 γ E2 to 17/2 ⁺ . $T_{1/2}$: Estimated from the 185.8 γ (t) data in 1985Pi05 (196 Pt(10 B,5n γ)). The absence of prompt component in the time spectrum produced by gating on the 185.8 γ , shown in figure 4(c) in 1985Pi05, suggests that 185.8 γ depopulates an isomeric state.
1932.3+x ^f 4	(25/2+)	118 ns 28	DE	Additional information 1. J^{π} : From syst (analogy to ²⁰³ Bi and ²⁰⁵ Bi) and shell-model calculations in 1985Pi05. $T_{1/2}$: From $\gamma\gamma$ (t) in 1985Pi05 (¹⁹⁶ Pt(¹⁰ B,5n γ)) using time-difference spectra between 617.3 γ with 967.4 γ , 411.9 γ , 271.9 γ and 185.8 γ . Other: 210 ns 20 from $\gamma\gamma$ (t) in 1982Br21 (²⁰³ Tl(α ,6n γ)) using gates on 617 γ above the isomer (start) and 186 γ , 272 γ , 412 γ and 967 γ below the isomer (stop).
1944.24 17	(5/2 ⁻)		A	J^{π} : 1054.7 γ to 5/2 ⁻ and 1944.2 γ to 9/2 ⁻ ; direct feeding in ²⁰¹ Po ε decay ($J^{\pi}=3/2^{-}$).
1971.3+x ^f 3	(27/2 ⁺)	105 ns 75	E	J ^{π} : From systematics and shell-model calculations in 1985Pi05. T _{1/2} : From $\gamma\gamma$ (t) in 1985Pi05 (¹⁹⁶ Pt(¹⁰ B,5n γ)) using time-difference spectra between 679.8 γ with 967.4 γ , 411.9 γ , 271.9 γ and 185.8 γ .
2034.3 7	(5/0)+		В	
2053.59 21	$(5/2)^{+}$		A	J [*] : $7/9.4\gamma$ (M1) to $5/2^+$; 1207.1γ E2 to $1/2^+$. I ^{π} : 624.7α to $7/2^-$, 1175.3α (E1) to $5/2^-$, 1210.3α to $1/2^+$
2005.82 17 2299.1+x 3 2386.7 5	$(27/2^+)$		A DE A	J^{π} : 366.6 γ (M1) to (25/2 ⁺).
2422.1 3	(3/2 ⁻ ,5/2)		A	J ^{π} : 1518.2 γ to 7/2 ⁻ , 1531.7 γ to 5/2 ⁻ ; direct feeding in ²⁰¹ Po ε decay ($J^{\pi}=3/2^{-}$).
2434.9 3	$1/2^+, 3/2, 5/2^+$		Α	J^{π} : 1160.6 γ to 5/2 ⁺ , 1588.5 γ to 1/2 ⁺ .
2455.5 3	1/2',3/2,5/2'		A	J [*] : 1181.3 γ to 5/2 ⁺ , 1609.0 γ to 1/2 ⁺ .
2484.5 5 2549.50+x 19 2589.7+x 3	$(27/2^+)$		A DE E	J^{π} : 250.2 γ M1+E2 to (27/2 ⁺), 617.27 γ M1+E2 to (25/2 ⁺).
2592.88 20	$(3/2^-, 5/2^+)$		A	J^{π} : 1689.3 γ to 7/2 ⁻ ; 1746.8 γ to 1/2 ⁺ .
2612.00+x 10	(27/2)		D	J^{π} : 679.7 γ D to (25/2 ⁺).
$2031.13 \pm X 24$ 2668 31 $\pm x 21$	$(29/2^+)$ $(29/2^+)$		DE F	J : $0/9.07 \text{ W1}+\text{E2}$ to $(2/2^+)$. I^{π} : 118.81 α M1+F2 to $(27/2^+)$. 736 0 α F2 to $(25/2^+)$.
$2740.01 + x^{g} 22$	$(29/2^{-})$	124 ns 4	DE	J^{π} : 88.88 γ to (29/2 ⁺), 190.49 γ (E1) to (27/2 ⁺); proposed

Continued on next page (footnotes at end of table)

Adopted Levels, Gammas (continued)

²⁰¹Bi Levels (continued)

E(level) [†]	Jπ‡	XREF	Comments
			configuration. $T_{1/2}$: From 617.3 γ (t) in 1985Pi05 (¹⁹⁶ Pt(¹⁰ B,5n γ)). Other: 160 ns 30 from $\gamma\gamma$ (t) in 1982Br21 (²⁰³ Tl(α ,6n γ)) using gates on 617 γ above the isomer and 186 γ , 272 γ , 412 γ and 967 γ below the isomer.
2902.09 25	$1/2^+, 3/2, 5/2^+$	Α	J^{π} : 2055.7 γ to 1/2 ⁺ , 1627.7 γ to (5/2) ⁺ .
2905.9 <i>3</i>	1/2,3/2,5/2+	Α	J^{π} : 2059.4 γ to 1/2 ⁺ , 1819.8 γ to 3/2 ⁺ .
2994.7+x 8		E	
3011.5+x 5		E	
3238.9+x <i>3</i>	$(31/2^{-})$	DE	J^{π} : 498.95 γ M1+E2 to (29/2 ⁻).
3422.9+x 9		Е	
3526.5+x 4	$(33/2^{-})$	DE	J^{π} : 287.3 γ to (31/2 ⁻), 786.3 γ (E2) to (29/2 ⁻).
3592.3+x? 10		E	
3638.4+x 5		DE	
3706.7+x 5		E	
3727.61+x 24	$(33/2^{-})$	D	J^{π} : 987.6 γ E2 to (29/2 ⁻).
3810.8+x 4	$(33/2^{-})$	DE	J^{π} : 284.19 γ M1(+E2) to (33/2 ⁻), 572.4 γ M1+E2 to (31/2 ⁻).
3922.9+x 6	$(35/2^{-})$	Е	J^{π} : 396.4 γ M1+E2 to (33/2 ⁻).
4075.3+x? 7	~ , /	Е	
4484.5+x 9		Е	
5282.3+x 10		E	

 † From a least squares fit to $E\gamma.$

¹ From deduced γ -ray transition multipolarities using $\gamma(\theta)$ and DCO in ¹⁹⁶Pt(¹⁰B,5n γ), $\gamma(\theta)$ in ²⁰³Tl(α ,6n γ) and α (K)exp, α (L)exp in ²⁰¹Po ε decay (15.6 min) and ²⁰¹Po ε decay (8.96 min), unless otherwise stated.

Configuration= π h⁺¹_{9/2}.

^(a) Configuration= $\pi s_{1/2}^{-1}$. [&] Configuration= $\pi (h_{9/2}^{+1}) \otimes 2^+$.

^{*a*} Configuration= π d_{3/2}⁻¹.

^b Configuration= π (h⁺¹_{9/2}) \otimes 4⁺.

^{*c*} Configuration= π f⁺¹_{7/2}.

^d Admixture of configuration= π (h⁺¹_{9/2}) ν (f⁻¹_{5/2}, i⁻¹_{13/2})₅₋ and configuration= π (h⁺¹_{9/2}) ν (p⁻¹_{3/2}, i⁻¹_{13/2})₅₋. ^e Admixture of configuration= π (h⁺¹_{9/2}) ν (f⁻¹_{5/2}, i⁻¹_{13/2})₇₋ and configuration= π (h⁺¹_{9/2}) ν (p⁻¹_{3/2}, i⁻¹_{13/2})₇₋. ^f Configuration= π (h⁺¹_{9/2}) ν (f⁻¹_{5/2}, i⁻¹_{13/2})₉₋. ^g Configuration= π (h⁺¹_{9/2}) ν (i⁻²_{13/2})₁₂₊.

						Adopt	ed Levels, Gan	<mark>nmas</mark> (continu	led)
							γ ⁽²⁰¹ H	Bi)	
E _i (level)	\mathbf{J}_i^π	Eγ	I_{γ}	E_f	\mathbf{J}_f^{π}	Mult.	δ	α &	Comments
846.35	1/2+	846.3 [‡] 3	100 [‡]	0	9/2-	M4		0.292 4	B(M4)(W.u.)=5.7×10 ⁻⁴ 7 α (K)=0.2100 30; α (L)=0.0617 9; α (M)=0.01563 22 α (N)=0.00404 6; α (O)=0.000810 11; α (P)=8.96×10 ⁻⁵ 13 Mult.: From α (K)exp and K/Lexp in 1986Br28 (²⁰¹ Po ε decay (15.50 min)).
890.24	5/2-	890.1 [‡] 2	100‡	0	9/2-	E2		0.00880 12	α(K)=0.00689 10; α(L)=0.001448 20; α(M)=0.000348 5 α(N)=8.89×10-5 12; α(O)=1.774×10-5 25; α(P)=1.947×10-6 27 Mult.: From α(K)exp in 1986Br28 (201Po ε decay (15.50 min)).
904.23	(7/2) ⁻	904.2 [‡] 2	100 [‡]	0	9/2-	M1+E2	0.5 4	0.0216 <i>31</i>	α(K)=0.0177 26; α(L)=0.0030 4; α(M)=0.00071 9 $α(N)=0.000181 23; α(O)=3.7×10^{-5} 5; α(P)=4.4×10^{-6} 6$ Mult.,δ: From $α(K)$ exp in 1986Br28 (²⁰¹ Po ε decay (15.50 min)).
964.40	11/2-	964.3 [#] 2	100 [#]	0	9/2-	M1(+E2)	-0.04 7	0.02109 <i>33</i>	$ \alpha(K)=0.01730 \ 27; \ \alpha(L)=0.00289 \ 4; \ \alpha(M)=0.000677 \ 10 $ $ \alpha(N)=0.0001730 \ 26; \ \alpha(O)=3.54\times10^{-5} \ 5; \ \alpha(P)=4.23\times10^{-6} \ 7 $ Mult.: From $\alpha(K)$ exp in 1986Br28 (²⁰¹ Po ε decay (15.50 min)); $\gamma(\theta)$ in 1985Pi05 (¹⁹⁶ Pt(¹⁰ B,5n\gamma)). $ \delta$: From $\gamma(\theta)$ in 1985Pi05 (¹⁹⁶ Pt(¹⁰ B,5n\gamma)).
967.49	13/2-	967.4 [#] 2	100#	0	9/2-	E2		0.00746 <i>10</i>	$\begin{aligned} &\alpha(K) = 0.00590 \ 8; \ \alpha(L) = 0.001190 \ 17; \ \alpha(M) = 0.000285 \ 4 \\ &\alpha(N) = 7.27 \times 10^{-5} \ 10; \ \alpha(O) = 1.456 \times 10^{-5} \ 20; \ \alpha(P) = 1.616 \times 10^{-6} \\ &23 \end{aligned}$ Mult.: From $\alpha(K)$ exp in 1986Br28 (²⁰¹ Po ε decay (8.96 min)); $\gamma(\theta)$ in 1982Br21 (²⁰³ Tl(α ,6n γ)) and 1985Pi05 (¹⁹⁶ Pt(¹⁰ B,5n γ)).
1086.21	3/2+	195.9 [‡] 3	0.60 [‡] 9	890.24	5/2-	E1		0.0841 12	B(E1)(W.u.)=4.6×10 ⁻⁷ +10-8 α (K)=0.0681 10; α (L)=0.01227 18; α (M)=0.00289 4 α (N)=0.000730 11; α (O)=0.0001440 21; α (P)=1.541×10 ⁻⁵ 22 Mult.: From α (K)exp in 1986Br28 (²⁰¹ Po ε decay (15.50 min)).
		240.1 [‡] 2	100 [‡] 4	846.35	1/2+	E2+M1	3.0 +4-3	0.303 13	B(M1)(W.u.)=0.00047 +12-10; B(E2)(W.u.)=26.8 +36-29 α (K)=0.169 12; α (L)=0.1004 15; α (M)=0.0259 4 α (N)=0.00659 10; α (O)=0.001250 19; α (P)=0.0001106 22 Mult.,δ: From K/L in 1986Br28 (²⁰¹ Po ε decay (15.50 min)).
1186.59	(7/2)-	296.1 [‡] 3	9.3 [‡] 8	890.24	5/2-	[M1]		0.481 7	α (K)=0.392 6; α (L)=0.0678 10; α (M)=0.01592 23 α (N)=0.00407 6; α (O)=0.000832 12; α (P)=9.91×10 ⁻⁵ 14
		1186.7 [‡] 2	100 [‡] 4	0	9/2-	M1(+E2)	<0.9	0.0107 17	α (K)=0.0088 <i>14</i> ; α (L)=0.00148 <i>21</i> ; α (M)=0.00035 <i>5</i> α (N)=8.9×10 ⁻⁵ <i>12</i> ; α (O)=1.81×10 ⁻⁵ <i>26</i> ; α (P)=2.15×10 ⁻⁶ <i>32</i> ;

					-	Adopted Lev	els, Gammas	(continued)	
						γ ⁽²⁰	⁰¹ Bi) (continue	ed)	
E _i (level)	\mathbf{J}_i^{π}	Eγ	I_{γ}	E_f	\mathbf{J}_{f}^{π}	Mult.	δ	α &	Comments
									α (IPF)=4.7×10 ⁻⁶ 5 Mult., δ : From α (K)exp in 1986Br28 (²⁰¹ Po ε decay (15.50 min)).
1274.45	(5/2)+	188.6 [‡] 3	55.9 [‡] 24	1086.21	3/2+	M1+E2	0.53 8	1.43 7	α(K)=1.11 7; α(L)=0.245 4; α(M)=0.0593 12 α(N)=0.01514 31; α(O)=0.00302 5; α(P)=0.000332 7 Mult.,δ: From α(K)exp and K/L in 1986Br28 (201Po ε decay (15.50 min)).
		428.2 [‡] 3	100 [‡] 4	846.35	1/2+	(E2)		0.0451 6	$\alpha(K)=0.0298 4; \alpha(L)=0.01146 16; \alpha(M)=0.00290 4$ $\alpha(N)=0.000738 10; \alpha(O)=0.0001423 20;$ $\alpha(P)=1.355\times10^{-5} 19$ Mult.: From $\alpha(K)$ exp in 1986Br28 (²⁰¹ Po ε decay (15.50
1379.34	15/2-	411.86 [†] 20	100 [†] 3	967.49	13/2-	M1+E2	-0.023 17	0.1966 28	min)). $\alpha(K)=0.1606\ 23;\ \alpha(L)=0.0275\ 4;\ \alpha(M)=0.00646\ 9$ $\alpha(N)=0.001652\ 23;\ \alpha(O)=0.000338\ 5;\ \alpha(P)=4.02\times10^{-5}\ 6$ Mult.: From $\gamma(\theta)$ and $\alpha(\exp)$ in 1982Br21 (203 Tl($\alpha,6n\gamma$)), $\gamma(\theta)$ and DCO in 1985Pi05 (196 Pt(10 B,5n\gamma)).
									δ: From $\gamma(\theta)$ in 1985Pi05 (¹⁹⁶ Pt(¹⁰ B,5nγ)). Other: ≈0.1 from $\gamma(\theta)$ in 1982Br21 (²⁰³ Tl(α,6nγ)).
		414.9 [†] 5	3.57 [†] <i>17</i>	964.40	11/2-	[E2]		0.0489 7	α (K)=0.0319 5; α (L)=0.01274 19; α (M)=0.00323 5 α (N)=0.000822 12; α (O)=0.0001582 23; α (P)=1.496×10 ⁻⁵ 22
1441.71	7/2-	537.5 [‡] 2	58 [‡] 7	904.23	(7/2)-	M1		0.0968 14	α (K)=0.0792 <i>11</i> ; α (L)=0.01347 <i>19</i> ; α (M)=0.00316 <i>4</i> α (N)=0.000808 <i>11</i> ; α (O)=0.0001651 <i>23</i> ; α (P)=1.969×10 ⁻⁵ <i>28</i>
									Mult.: From α (K)exp in 1986Br28 (²⁰¹ Po ε decay (15.50 min)).
		551.9 [‡] 3	100 [‡] 4	890.24	5/2-	M1(+E2)	<0.7	0.079 11	α(K)=0.065 9; α(L)=0.0113 12; α(M)=0.00267 28 $α(N)=0.00068 7; α(O)=0.000139 15; α(P)=1.64×10^{-5} 20$ Mult.,δ: From $α(K)$ exp in 1986Br28 (²⁰¹ Po ε decay (15.50 min)).
		1442.2 [‡] 6	42 [‡] 4	0	9/2-	M1(+E2)	<1.4	0.0063 13	$\begin{split} &\alpha(\text{K}){=}0.0051 \ 11; \ \alpha(\text{L}){=}0.00085 \ 17; \ \alpha(\text{M}){=}0.00020 \ 4 \\ &\alpha(\text{N}){=}5.1{\times}10^{-5} \ 10; \ \alpha(\text{O}){=}1.04{\times}10^{-5} \ 21; \ \alpha(\text{P}){=}1.23{\times}10^{-6} \\ &26; \ \alpha(\text{IPF}){=}7.1{\times}10^{-5} \ 12 \\ &\text{Mult.,} \delta: \ \text{From } \alpha(\text{K})\text{exp in } 1986\text{Br28} \ (^{201}\text{Po} \ \varepsilon \ \text{decay} \\ &(15.50 \ \text{min})). \end{split}$

S

From ENSDF

²⁰¹₈₃Bi₁₁₈-5

					Ad	opted Levels	, Gamma	as (continued)	
						γ (²⁰¹ B	i) (contir	nued)	
E _i (level)	\mathbf{J}_i^{π}	Eγ	I_{γ}	E_f	J_f^π	Mult.	δ	α &	Comments
1470.87	(5/2,7/2) ⁻	566.6 [‡] 3	32 [‡] 4	904.23	(7/2)-	M1(+E2)	<0.9	0.071 14	α(K)=0.057 12; α(L)=0.0102 16; α(M)=0.00239 35 α(N)=0.00061 9; α(O)=0.000125 19; α(P)=1.46×10-5 25 Mult.,δ: From α(K)exp in 1986Br28 (201Po ε decay (15.50 min)).
		1470.9 [‡] 3	100 [‡] 7	0	9/2-				
1474.6	17/2-	95.26 [†] 15	100 [†]	1379.34	15/2-	M1(+E2)		10.0 17	$\begin{array}{l} \alpha(\text{K}) = 5 \ 5; \ \alpha(\text{L}) = 3.8 \ 21; \ \alpha(\text{M}) = 1.0 \ 6 \\ \alpha(\text{N}) = 0.25 \ 15; \ \alpha(\text{O}) = 0.047 \ 26; \ \alpha(\text{P}) = 0.0040 \ 16 \\ \text{Mult.: From } \gamma(\theta) \ \text{and} \ \alpha(\text{exp}) \ \text{in} \ 1982\text{Br21} \\ (^{203}\text{Tl}(\alpha, 6n\gamma)), \ \gamma(\theta) \ \text{in} \ 1985\text{Pi05} \ (^{196}\text{Pt}(^{10}\text{B}, 5n\gamma)). \end{array}$
1483.54	(3/2 ⁻)	593.3 [‡] 2	100 [‡] 4	890.24	5/2-	M1(+E2)	< 0.33	0.0720 28	α(K)=0.0588 24; α(L)=0.01006 33; α(M)=0.00236 8 α(N)=0.000603 19; α(O)=0.000123 4; α(P)=1.47×10-5 5 Mult.,δ: From α(K)exp in 1986Br28 (201Po ε decay (15.50 min)).
		636.5 ^{‡a} 2	12.1 [‡] 15	846.35	1/2+	[E1]		0.00609 9	α (K)=0.00504 7; α (L)=0.000802 11; α (M)=0.0001863 26 α (N)=4.74×10 ⁻⁵ 7; α (O)=9.58×10 ⁻⁶ 13; α (P)=1.106×10 ⁻⁶ 15
1501.89	(13/2+)	534.2 [#] 3	42.5 [#] 17	967.49	13/2-	[E1]		0.00865 12	α (K)=0.00714 <i>10</i> ; α (L)=0.001153 <i>16</i> ; α (M)=0.000269 <i>4</i> α (N)=6.83×10 ⁻⁵ <i>10</i> ; α (O)=1.376×10 ⁻⁵ <i>19</i> ; α (P)=1.576×10 ⁻⁶ 22
		537.5 [#] 2	100 [#] 6	964.40	11/2-	[E1]		0.00854 12	α (K)=0.00705 <i>10</i> ; α (L)=0.001138 <i>16</i> ; α (M)=0.000265 <i>4</i> α (N)=6.74×10 ⁻⁵ <i>9</i> ; α (O)=1.359×10 ⁻⁵ <i>19</i> ; α (P)=1.556×10 ⁻⁶ <i>22</i>
		1502.4 [#] 3	3.1 [#] 5	0	9/2-	(E3)		0.00677 9	$\alpha(K) = 0.00528 \ 7; \ \alpha(L) = 0.001108 \ 16; \ \alpha(M) = 0.000267 \ 4$ $\alpha(N) = 6.82 \times 10^{-5} \ 10; \ \alpha(O) = 1.371 \times 10^{-5} \ 19;$ $\alpha(P) = 1.539 \times 10^{-6} \ 22; \ \alpha(IPF) = 2.92 \times 10^{-5} \ 4$ Mult.: From $\alpha(K)$ exp in 1986Br28 (²⁰¹ Po ε decay (8.96 min)).
1504.40		540.1 ^{#} 3	100 [#] 5	964.40	$11/2^{-}$				
		1504.3 [#] 3	9.3 [#] 21	0	9/2-				

						$\gamma(^{201}\text{Bi})$ (con	ntinued)		
E _i (level)	\mathbf{J}_i^{π}	E_{γ}	I_{γ}	E_{f}	\mathbf{J}_f^{π}	Mult.	δ	α &	Comments
1616.3	1/2+,3/2+,5/2+	530.1 [‡] 3	100 [‡]	1086.21	3/2+	M1+E2	1.4 +5-3	0.052 9	$\alpha(K)=0.040 \ 8; \ \alpha(L)=0.0086 \ 10; \ \alpha(M)=0.00207$
			щ						²² α (N)=0.00053 6; α (O)=0.000106 12; α (P)=1.17×10 ⁻⁵ 16 Mult., δ : From α (K)exp in 1986Br28 (²⁰¹ Po ε decay (15.50 min)).
1665.1		697.6 [#] 2	100#	967.49	13/2-				
1719.15	(11/2,13/2)+	217.6# 3	8.7# 14	1501.89	(13/2 ⁺)	M1(+E2)	<1.7	0.83 29	$\alpha(K)=0.63\ 29;\ \alpha(L)=0.155\ 5;\ \alpha(M)=0.0379\ 7$ $\alpha(N)=0.00967\ 16;\ \alpha(O)=0.00191\ 5;$ $\alpha(P)=0.000203\ 30$ Mult. δ : From $\alpha(K)$ exp in 1986Br28 (²⁰¹ Po ε
									decay (8.96 min)).
		754.6 [#] 2	100 [#] 6	964.40	11/2-	E1		0.00438 6	α (K)=0.00364 5; α (L)=0.000571 8; α (M)=0.0001324 19
									α (N)=3.37×10 ⁻⁵ 5; α (O)=6.82×10 ⁻⁶ 10; α (P)=7.94×10 ⁻⁷ 11
									Mult.: From α (K)exp in 1986Br28 (²⁰¹ Po ε decay (8.96 min)). Note, that $\gamma(\theta)$ in 1985Pi05 (¹⁹⁶ Pt(¹⁰ B,5n γ)) implies M1+E2 multipolarity.
1746.5	17/2+	271.91 [†] 20	100†	1474.6	17/2-	E1		0.0383 5	B(E1)(W.u.)= $1.9 \times 10^{-6} + 6 - 4$ $\alpha(K)=0.0312 4; \alpha(L)=0.00540 8;$ $\alpha(M)=0.001267 18$ $\alpha(N)=0.000321 5; \alpha(O)=6.39 \times 10^{-5} 9;$ $\alpha(P)=7.01 \times 10^{-6} 10$
									Mult.: From α (K)exp in 1986Br28 (²⁰¹ Po ε decay (8.96 min)), $\gamma(\theta)$ and $\alpha(exp)$ in 1982Br21 (²⁰³ Tl($\alpha,6n\gamma$)), $\gamma(\theta)$ and DCO in 1985Pi05 (¹⁹⁶ Pt(¹⁰ B,5n γ)).
1762.9		798.5 [#] 3	55 [#] 5	964.40	11/2-				
1779.00	(2)0 = 5(2)	1/62.9" 6	100" 8	0	$9/2^{-1}$				
1778.92	(3/2, 3/2)	$\frac{5}{4.0^{+}}$	8/7 0 100 [‡] 11	904.23	(1/2) $5/2^{-1}$				
1817 86	1/2+ 3/2 5/2+	$543.4^{\ddagger}.3$	$63^{\ddagger} 4$	090.24 1274 45	$(5/2)^+$				
1017.00	1/2 ,5/2,5/2	731.7 [‡] 2	65 [‡] 6	1086 21	$3/2^+$				
		971.4^{\ddagger} 3	$100^{\ddagger} 6$	846.35	$1/2^+$				
1848.16	$(5/2^{-})$	944.2 [‡] 4	54 [‡] 8	904.23	$(7/2)^{-}$				
	(1848.0 [‡] 3	$100^{\ddagger} 10$	0	9/2-				

					Ad	opted Leve	ls, Gammas (o	continued)	
						$\gamma(^{201}$	Bi) (continued)	
E _i (level)	\mathbf{J}_i^π	Eγ	I_{γ}	E_f	\mathbf{J}_f^{π}	Mult.	δ	α &	Comments
1858.02	3/2+	583.6 [‡] 3	100 [‡] 6	1274.45	(5/2)+	M1+E2	1.0 +10-5	0.050 17	
1927.32	(5/2-)	$771.8^{\ddagger} 2$ $1023.0^{\ddagger} 2$ $1927.5^{\ddagger} 3$	85 [‡] 6 100 [‡] 9 97 [‡] 11	1086.21 904.23 0	3/2+ (7/2) ⁻ 9/2 ⁻	E0+M1		0.10 3	(15.50 min)). Mult., α : From ²⁰¹ Po ε decay (15.50 min).
1932.3	21/2+	185.77 [†] 20	100 [†]	1746.5	17/2+	E2		0.583 8	B(E2)(W.u.)>0.57 α (K)=0.1975 28; α (L)=0.287 4; α (M)=0.0755 11 α (N)=0.01922 28; α (O)=0.00358 5; α (P)=0.000290 4 Mult.: From $\gamma(\theta)$ and $\alpha(\exp)$ in 1982Br21 (203 Tl($\alpha,6n\gamma$)), $\gamma(\theta)$ and DCO in 1985Pi05 (196 Pt(10 B 5n γ))
1932.3+x	(25/2+)	(<80)		1932.3	21/2+				E_{γ} : Anticipated in the decay of this level by analogy to ^{201}Bi and ^{205}Bi , and the non-observation of low-energy E_{γ} in the corresponding γ_{rray} spectra
1944.24	(5/2 ⁻)	$1039.7^{\ddagger} 2$ $1054.7^{\ddagger} 3$ $1044.2^{\ddagger} 3$	$75^{\ddagger} 9$ $100^{\ddagger} 9$ $100^{\ddagger} 10$	904.23 890.24	$(7/2)^{-}$ 5/2 ⁻ 9/2 ⁻				iow onergy 27 in the corresponding 7 ray spectra.
1971.3+x	(27/2 ⁺)	(39.0 5)	100 10	1932.3+x	(25/2 ⁺)	[M1]		30.1 12	$\alpha(L)=22.9 \; 9; \; \alpha(M)=5.41 \; 22$ $\alpha(N)=1.38 \; 6; \; \alpha(O)=0.282 \; 12; \; \alpha(P)=0.0336 \; 14$ B(M1)(W.u.)=0.00011 + 14-5 $E_{\gamma}: From level energy difference. The transition was not observed directly and the existence is based on the averaging of the existence is based on the$
2034.3		532.4 [#] 6	100 [#]	1501.89	(13/2+)				
2053.59	(5/2)+	779.4 [‡] 3	35 [‡] 3	1274.45	(5/2)+	(M1)		0.0366 5	$\alpha(K)=0.0300 \ 4; \ \alpha(L)=0.00505 \ 7; \ \alpha(M)=0.001181 \ 17$ $\alpha(N)=0.000302 \ 4; \ \alpha(O)=6.18\times10^{-5} \ 9; \ \alpha(P)=7.38\times10^{-6}$ 10
		967.4 [‡] 2	28 [‡] 4	1086.21	3/2+	(E2)		0.00746 <i>10</i>	Mult.: From ²⁰¹ Po ε decay (15.50 min). $\alpha(K)=0.00590 \ 8; \ \alpha(L)=0.001190 \ 17; \ \alpha(M)=0.000285 \ 4$ $\alpha(N)=7.27\times10^{-5} \ 10; \ \alpha(O)=1.456\times10^{-5} \ 20;$ $\alpha(P)=1.616\times10^{-6} \ 23$ Mult.: From $\alpha(K)$ exp in 1986Br28 (²⁰¹ Po ε decay
		1207.1 [‡] 2	100 [‡] 5	846.35	1/2+	E2		0.00488 7	(15.50 min)). $\alpha(K)=0.00393~6; \alpha(L)=0.000726~10; \alpha(M)=0.0001720$ 24

 ∞

From ENSDF

 $^{201}_{83}\mathrm{Bi}_{118}\text{-}8$

$^{201}_{83}{\rm Bi}_{118}\text{--}8$

					Ado	pted Levels,	Gamma	s (continued)	
						γ (²⁰¹ Bi) (contin	ued)	
E _i (level)	${f J}^\pi_i$	E_{γ}	I_{γ}	E_{f}	\mathbf{J}_f^π	Mult.	δ	α &	Comments
									$\begin{aligned} &\alpha(\text{N}) = 4.39 \times 10^{-5} \ 6; \ \alpha(\text{O}) = 8.85 \times 10^{-6} \ 12; \\ &\alpha(\text{P}) = 1.007 \times 10^{-6} \ 14; \ \alpha(\text{IPF}) = 4.36 \times 10^{-6} \ 6 \\ &\text{Mult.: From } \alpha(\text{K}) \text{exp in } 1986 \text{Br}28 \ (^{201}\text{Po} \ \varepsilon \ \text{decay} \\ &(15.50 \ \text{min})). \end{aligned}$
2065.82	5/2+	624.7 [‡] 3	17.3 [‡] <i>12</i>	1441.71	7/2-	[E1]		0.00631 9	$\alpha(K)=0.00523 7; \alpha(L)=0.000833 12; \alpha(M)=0.0001936 27 \alpha(N)=4.92\times10^{-5} 7; \alpha(O)=9.95\times10^{-6} 14; \alpha(P)=1.148\times10^{-6} 16$
		791.4 [‡] 2	100 [‡] 4	1274.45	(5/2)+	M1(+E2)	≤0.4	0.0335 <i>17</i>	
		979.7 [‡] 3	31.9 [‡] 21	1086.21	3/2+	[M1]		0.02026 28	$\alpha(K)=0.01663\ 23;\ \alpha(L)=0.00278\ 4;\ \alpha(M)=0.000650$ g $\alpha(N)=0.0001662\ 23;\ \alpha(O)=3.40\times10^{-5}\ 5;$ $\alpha(D)=0.0001662\ 23;\ \alpha(O)=0.40\times10^{-5}\ 5;$
		1175.3 [‡] 2	76 [‡] 4	890.24	5/2-	(E1)		1.97×10 ⁻³ 3	$\alpha(P)=4.07\times10^{-6} 6$ $\alpha(K)=0.001634 \ 23; \ \alpha(L)=0.0002490 \ 35;$ $\alpha(M)=5.75\times10^{-5} \ 8$ $\alpha(N)=1.465\times10^{-5} \ 21; \ \alpha(O)=2.98\times10^{-6} \ 4;$ $\alpha(P)=3.52\times10^{-7} \ 5; \ \alpha(IPF)=8.73\times10^{-6} \ 13$ Mult.: From $\alpha(K)$ exp in 1986Br28 (²⁰¹ Po ε decay (15 50 min)).
		1219.3 [‡] 3	22.7 [‡] 21	846.35	1/2+	[E2]		0.00479 7	$\alpha(K) = 0.00386 \ 5; \ \alpha(L) = 0.000710 \ 10; \alpha(M) = 0.0001683 \ 24 \alpha(N) = 4.29 \times 10^{-5} \ 6; \ \alpha(O) = 8.66 \times 10^{-6} \ 12; \alpha(P) = 9.86 \times 10^{-7} \ 14; \ \alpha(IPF) = 5.48 \times 10^{-6} \ 8$
2299.1+x	(27/2 ⁺)	366.6 [†] 4	100 [†]	1932.3+x	(25/2 ⁺)	(M1)		0.269 4	
2386.7 2422.1	(3/2 ⁻ ,5/2)	1300.5 [‡] 4 1518.2 [‡] 4 1531.7 [‡] 3	100^{\ddagger} $100^{\ddagger} 6$ $26^{\ddagger} 5$	1086.21 904.23 890.24	3/2 ⁺ (7/2) ⁻ 5/2 ⁻				

From ENSDF

 $^{201}_{83}{\rm Bi}_{118}\text{-}9$

L

9

				Ad	opted Lev	vels, Gamm	nas (continue	d)	
					$\gamma(2^{2})$	⁰¹ Bi) (conti	inued)		
E _i (level)	\mathbf{J}_i^{π}	Eγ	I_{γ}	E_f	\mathbf{J}_f^{π}	Mult.	δ	α &	Comments
2434.9	1/2+,3/2,5/2+	$1160.6^{\ddagger} 5$ $1348.4^{\ddagger} 6$ $1588.5^{\ddagger} 3$	$64^{\ddagger} 8$ $100^{\ddagger} 10$ $69^{\ddagger} 10$	1274.45 1086.21 846.35	$(5/2)^+$ $3/2^+$ $1/2^+$				
2455.5	1/2+,3/2,5/2+	$1181.3^{\ddagger} 5$ $1369.3^{\ddagger} 4$	27 [‡] 5 100 [‡] 8	1274.45 1086.21	$(5/2)^+$ $3/2^+$			0.005 4	α(K)=0.004 3; α(L)=0.0007 6 Mult.: From $α(K)$ exp in 1986Br28 (²⁰¹ Po ε decay (15.50 min)).
2484.3	1/2,3/2,5/2+	1609.0 [‡] <i>3</i> 1398.0 [‡] <i>3</i> 1638.1 [‡] 5	98 [‡] 8 100 [‡] 6 29 [‡] 4	846.35 1086.21 846.35	1/2+ 3/2+ 1/2+				
2549.50+x	(27/2+)	250.2 [†] 4	4.37 [†] 25	2299.1+x	(27/2 ⁺)	M1+E2	>1.2	0.32 11	$\begin{aligned} &\alpha(\mathbf{K}) = 0.21 \ 11; \ \alpha(\mathbf{L}) = 0.088 \ 5; \ \alpha(\mathbf{M}) = 0.0224 \ 8 \\ &\alpha(\mathbf{N}) = 0.00571 \ 22; \ \alpha(\mathbf{O}) = 0.00110 \ 6; \\ &\alpha(\mathbf{P}) = 0.000102 \ 14 \\ &\text{Mult.}, \delta: \ \text{From } \gamma(\theta) \ \text{in } 1985\text{Pi05} \\ &(^{196}\text{Pt}(^{10}\text{B},\text{Sn}\gamma)). \end{aligned}$
		617.27 [†] 25	100.0 [†] 9	1932.3+x	(25/2+)	M1+E2	+0.046 28	0.0671 <i>10</i>	$\begin{aligned} &\alpha(\mathbf{K}) = 0.0550 \ 8; \ \alpha(\mathbf{L}) = 0.00931 \ 13; \\ &\alpha(\mathbf{M}) = 0.002183 \ 31 \\ &\alpha(\mathbf{N}) = 0.000558 \ 8; \ \alpha(\mathbf{O}) = 0.0001141 \ 16; \\ &\alpha(\mathbf{P}) = 1.362 \times 10^{-5} \ 19 \\ &\text{Mult.}, \delta: \ \text{From } \gamma(\theta) \ \text{in } 1985\text{Pi05} \\ &(\frac{196}{\text{Pt}}(^{10}\text{B}, 5n\gamma)). \end{aligned}$
2589.7+x 2592.88	(3/2 ⁻ ,5/2 ⁺)	$657.4^{\dagger} 3$ $1318.0^{\ddagger} 5$ $1506.6^{\ddagger} 3$ $1689.3^{\ddagger} 3$ $1702.1^{\ddagger} 3$ $1746.8^{\ddagger} 5$	$100^{\dagger} \\ 37^{\ddagger} 5 \\ 62^{\ddagger} 6 \\ 54^{\ddagger} 6 \\ 100^{\ddagger} 6 \\ 44^{\ddagger} 6$	1932.3+x 1274.45 1086.21 904.23 890.24 846.35	$(25/2^+)$ $(5/2)^+$ $3/2^+$ $(7/2)^-$ $5/2^-$ $1/2^+$				
2612.00+x	(27/2)	679.7 1	100	1932.3+x	$(25/2^+)$	D			E _γ ,I _γ : From ²⁰³ Tl(α,6nγ). Mult.: A ₂ =-0.47 3, A ₄ =-0.06 4 in ²⁰³ Tl(α,6nγ).
2651.13+x	(29/2+)	679.8 [†] 3	100 [†]	1971.3+x	(27/2 ⁺)	M1+E2	-0.15 12	0.0514 18	$\begin{aligned} &\alpha(\mathbf{K}) = 0.0421 \ 16; \ \alpha(\mathbf{L}) = 0.00713 \ 22; \\ &\alpha(\mathbf{M}) = 0.00167 \ 5 \\ &\alpha(\mathbf{N}) = 0.000427 \ 13; \ \alpha(\mathbf{O}) = 8.74 \times 10^{-5} \ 27; \\ &\alpha(\mathbf{P}) = 1.042 \times 10^{-5} \ 35 \\ &\text{Mult}, \delta: \ \text{From } \gamma(\theta) \ \text{in } 1985\text{Pi05} \\ &(^{196}\text{Pt}(^{10}\text{B},\text{Sn}\gamma)). \end{aligned}$

				Ad	opted Lev	vels, Gamma	s (cont	tinued)	
					$\gamma(20)$	⁰¹ Bi) (contin	ued)		
E _i (level)	\mathbf{J}_i^{π}	Eγ	I_{γ}	\mathbf{E}_{f}	J_f^π	Mult.	δ	α &	Comments
2668.31+x	(29/2+)	118.81 [†] <i>15</i>	52 [†] 3	2549.50+x	(27/2+)	M1(+E2)	_	4.8 15	α (K)=2.8 23; α (L)=1.5 6; α (M)=0.38 17 α (N)=0.10 4; α (O)=0.019 8; α (P)=0.0017 4 Mult.: From $\gamma(\theta)$ in 1985Pi05 (¹⁹⁶ Pt(¹⁰ B,5n γ)).
		736.0 [†] 4	100 [†] 5	1932.3+x	(25/2+)	E2		0.01296 18	$\alpha(K)=0.00989 \ 14; \ \alpha(L)=0.002324 \ 33; \ \alpha(M)=0.000566 \\ \alpha(N)=0.0001443 \ 20; \ \alpha(O)=2.86\times10^{-5} \ 4; \\ \alpha(P)=3.04\times10^{-6} \ 4 \\ M \ k=F_{0}=(0) \ (0) \ (10055)(05 \ (1005)(10055)(05 \ (10055)(05)$
2740.01+x	(29/2 ⁻)	(71.7 3)		2668.31+x	$(29/2^+)$				Mult.: From $\gamma(\theta)$ in 1985P105 (***Pt(**B,Sn γ)). E _{γ} : From E(level) difference.
		88.88 [†] 12	93† 27	2651.13+x	(29/2+)	[E1]		0.1292 <i>19</i>	$\begin{array}{l} \alpha(\text{L}) = 0.0987 \ 14; \ \alpha(\text{M}) = 0.02341 \ 34 \\ \alpha(\text{N}) = 0.00588 \ 9; \ \alpha(\text{O}) = 0.001128 \ 16; \ \alpha(\text{P}) = 0.0001113 \\ 16 \\ \text{B}(\text{E1})(\text{W.u.}) < 8.6 \times 10^{-7} \end{array}$
		128 ^{<i>a</i>} 1		2612.00+x	(27/2)				E _{γ} : From 1982Br21 in ²⁰³ Tl(α ,6n γ).
		150.5 [†] 6	10.9 [†] 7	2589.7+x		D			$\alpha(K)=0.131 4; \alpha(L)=0.0245 8; \alpha(M)=0.00576 18; \alpha(N+)=0.00187 6$ Mult : From $\alpha(\theta)$ in 1985Pi05 (¹⁹⁶ Pt(¹⁰ B 5ng))
		190.49 [†] 25	100.0 [†] <i>12</i>	2549.50+x	(27/2+)	(E1)		0.0901 <i>13</i>	B(E1)(W.u.)<9.0×10 ⁻⁸ α (K)=0.0729 <i>10</i> ; α (L)=0.01318 <i>19</i> ; α (M)=0.00310 <i>4</i> α (N)=0.000784 <i>11</i> ; α (O)=0.0001546 <i>22</i> ; α (P)=1.651×10 ⁻⁵ <i>24</i> Mult.: From $\gamma(\theta)$ in 1985Pi05 (¹⁹⁶ Pt(¹⁰ B,5n γ)) and 1982Br21 (²⁰³ Tl(α ,6n γ)).
		440.9 [†] 4	60.8 [†] 14	2299.1+x	(27/2 ⁺)	(E1)		0.01292 18	B(E1)(W.u.) \leq 4.4×10 ⁻⁹ α (K)=0.01063 <i>15</i> ; α (L)=0.001749 <i>25</i> ; α (M)=0.000408 6
									α (N)=0.0001037 <i>15</i> ; α (O)=2.083×10 ⁻³ <i>29</i> ; α (P)=2.360×10 ⁻⁶ <i>33</i> Mult.: From $\gamma(\theta)$ in 1985Pi05 (¹⁹⁶ Pt(¹⁰ B,5n γ)).
2902.09	1/2+,3/2,5/2+	1627.7 [‡] 3 1815.8 [‡] 4 2055.7 [‡] 3	$100^{\ddagger} 11$ $50^{\ddagger} 9$ $20^{\ddagger} 6$	1274.45 1086.21 846.35	$(5/2)^+$ $3/2^+$ $1/2^+$				
2905.9	1/2,3/2,5/2+	1819.8 [‡] <i>3</i> 2059.4 [‡] <i>3</i>	83 [‡] 20 100 [‡] 16	1086.21 846.35	3/2+ 1/2+				
2994.7+x 3011.5+x		$ \begin{array}{c} 1062.4^{\dagger} & 8 \\ 421.8^{\dagger} & 5 \\ 462.2^{\dagger} & 8 \end{array} $	100^{\dagger} 100^{\dagger} 16 60^{\dagger} 16	1932.3+x 2589.7+x 2549.50+x	(25/2 ⁺) (27/2 ⁺)				

н

		nued)	nmas (conti	Levels, Gar	Adopted					
			ontinued)	γ ⁽²⁰¹ Bi) (co						
	Comments	α ^{&}	δ	Mult.	\mathbf{J}_f^{π}	E_f	I_{γ}	Eγ	\mathbf{J}_i^π	E _i (level)
$I)=0.00365 \ 14$; Pt(¹⁰ B,5n γ)) B,5n γ)).	α(K)=0.089 5; α(L)=0.0155 6; α(M)=0.00 α(N)=0.00093 4; α(O)=0.000190 8; α(P)=2.25×10 ⁻⁵ 10 Mult.: From γ(θ) in 1985Pi05 (¹⁹⁶ Pt(¹⁰ B,5 and 1982Br21 (²⁰³ Tl(α,6nγ)). δ: From γ(θ) in 1985Pi05 (¹⁹⁶ Pt(¹⁰ B,5nγ)).	0.109 6	-0.33 11	M1+E2	(29/2 ⁻)	2740.01+x	100 [†]	498.95 [†] [@] 25	(31/2 ⁻)	3238.9+x
						2994.7+x	100†	428.2 [†] 4		3422.9+x
M)=0.01730 25 3;	α (K)=0.426 6; α (L)=0.0736 11; α (M)=0.0 α (N)=0.00443 6; α (O)=0.000904 13; α (P)=0.0001077 16	0.522 8		[M1]	(31/2 ⁻)	3238.9+x	26 [†] 4	287.3 [†] 4	(33/2 ⁻)	3526.5+x
28; $10^{-5} 34;$	$\alpha(K)=0.00871$ 12; $\alpha(L)=0.001963$ 28; $\alpha(M)=0.000476$ 7 $\alpha(N)=0.0001214$ 17; $\alpha(O)=2.411\times10^{-5}$ 34 $\alpha(P)=2.60\times10^{-6}$ 4	0.01130 <i>16</i>		(E2)	(29/2 ⁻)	2740.01+x	100.0 [†] 14	786.3 ^{†@} 3		
$t(^{10}B,5n\gamma)).$	Mult.: From $\gamma(\theta)$ in 1985Pi05 (¹⁹⁶ Pt(¹⁰ B,5))						4	L.		
094 19 ()=0.000450 23 $Pt(^{10}B,5n\gamma)).$	α (K)=1.0 8; α (L)=0.38 5; α (M)=0.094 19 α (N)=0.024 5; α (O)=0.0047 7; α (P)=0.000 Mult.: From $\gamma(\theta)$ in 1985Pi05 (¹⁹⁶ Pt(¹⁰ B,5))	1.5 7		M1(+E2)	(20/21)	3422.9+x	100	169.4 [†] 4		3592.3+x?
100 5	1005505 (1965)(105			5	$(29/2^+)$	2651.13+x	100	987.3 ⁺ 4		3638.4+x
$t(1^{\circ}B,5n\gamma)).$	Mult.: From $\gamma(\theta)$ in 1985Pi05 (199Pt(19B,5			D	(33/2)	3526.5+x	100 6	180.0 5		3/06./+x
5; 10 ⁻⁵ <i>19</i> :	$\alpha(K)=0.00568 \ 8; \ \alpha(L)=0.001134 \ 16;$ $\alpha(M)=0.000271 \ 4$ $\alpha(N)=6.92 \times 10^{-5} \ 10; \ \alpha(O)=1.387 \times 10^{-5} \ 15$	0.00717 10		E2	$(31/2^{-})$ $(29/2^{-})$	3238.9+x 2740.01+x	98† <i>49</i> 100	468.01 <i>4</i> 987.6 <i>1</i>	(33/2 ⁻)	3727.61+x
01 5	α (P)=1.544×10 ⁻⁶ 22 E _{γ} ,I _{γ} : From ²⁰³ Tl(α ,6n γ). Mult.: From A ₂ =+0.31 5, A ₄ =-0.01 5 (²⁰³ Tl(α ,6n γ)).									
I)=0.0172 7 ; α (P)=0.000104	α (K)=0.39 5; α (L)=0.0727 34; α (M)=0.01 α (N)=0.00440 17; α (O)=0.00089 4; α (P)= 7	0.49 5	≤0.58	M1(+E2)	(33/2 ⁻)	3526.5+x	100.0 [†] 22	284.19 [†] 25	(33/2 ⁻)	3810.8+x
${}^{5}\text{Pt}({}^{10}\text{B},5n\gamma)).$	Mult., δ : From $\gamma(\theta)$ in 1985Pi05 (¹⁹⁶ Pt(¹⁰ B									
1)=0.00245 <i>11</i> 6;	α (K)=0.060 4; α (L)=0.0104 5; α (M)=0.00 α (N)=0.000627 28; α (O)=0.000128 6; α (P)=1.51×10 ⁻⁵ 8	0.073 4	-0.41 11	M1+E2	(31/2 ⁻)	3238.9+x	19.6 [†] <i>17</i>	572.4 [†] 4		
5 Pt(10 B,5n γ)).	Mult., δ : From $\gamma(\theta)$ in 1985Pi05 (¹⁹⁶ Pt(¹⁰ B									
M)=0.00698 21 2;	α (K)=0.170 8; α (L)=0.0297 10; α (M)=0.0 α (N)=0.00179 5; α (O)=0.000364 12;	0.209 9	-0.24 11	M1+E2	(33/2-)	3526.5+x	100 [†]	396.4 [†] 4	(35/2 ⁻)	3922.9+x
	Mult.: From $\gamma(\theta)$ in 1985Pi05 (¹⁹⁰ P) Mult.: From $\gamma(\theta)$ in 1985Pi05 (¹⁹⁶ P) $\alpha(K)=0.00568 \ \beta; \ \alpha(L)=0.001134 \ 1000000271 \ 4000000271 \ 400000000000000000000000000000000000$	0.00717 <i>10</i> 0.49 <i>5</i> 0.073 <i>4</i> 0.209 <i>9</i>	≤0.58 -0.41 <i>11</i> -0.24 <i>11</i>	D E2 M1(+E2) M1+E2 M1+E2	(29/2 ⁺) (33/2 ⁻) (31/2 ⁻) (29/2 ⁻) (33/2 ⁻) (31/2 ⁻)	2651.13+x 3526.5+x 3238.9+x 2740.01+x 3526.5+x 3238.9+x 3526.5+x	$100^{\dagger} & 6 \\ 98^{\dagger} & 49 \\ 100 & 100.0^{\dagger} & 22 \\ 19.6^{\dagger} & 17 \\ 100^{\dagger} & 100^{\dagger}$	987.3 [†] 4 180.0 [†] 5 468.0 [†] 4 987.6 1 284.19 [†] 25 572.4 [†] 4 396.4 [†] 4	(33/2 ⁻) (33/2 ⁻) (35/2 ⁻)	3638.4+x 3706.7+x 3727.61+x 3810.8+x 3922.9+x

From ENSDF

 $^{201}_{83}{
m Bi}_{118}$ -12

 $^{201}_{83}{
m Bi}_{118}$ -12

Adopted Levels, Gammas (continued)						
γ ⁽²⁰¹ Bi) (continued)						
E _i (level)	Eγ	I_{γ}	\mathbf{E}_{f}	\mathbf{J}_f^{π}	Mult.	Comments
4075.3+x? 4484.5+x 5282.3+x	152.4 [†] 4 846.1 [†] 7 797.8 [†] 4	100 [†] 100 [†] 100 [†]	3922.9+x 3638.4+x 4484.5+x	(35/2 ⁻)	D	α (P)=4.32×10 ⁻⁵ <i>16</i> Mult., δ : From $\gamma(\theta)$ in 1985Pi05 (¹⁹⁶ Pt(¹⁰ B,5n γ)). Mult.: From $\gamma(\theta)$ in 1985Pi05 (¹⁹⁶ Pt(¹⁰ B,5n γ)).
[†] From ¹⁹⁶ Pt(¹⁰ B,5n γ). [‡] From 1986Br28 in ²⁰¹ Po ε decay (15.50 min). [#] From 1986Br28 in ²⁰¹ Po ε decay (8.96 min). [@] Reported by 1985Pi05 to have a delayed component with T _{1/2} =14 ns 3. Similar delayed component (T _{1/2} >10 ns) is reported in 1982Br21 above the 3812+X keV level.						

[&] Additional information 2. ^{*a*} Placement of transition in the level scheme is uncertain.

 $^{201}_{\ 83}{\rm Bi}_{118}$

Adopted Levels, Gammas Legend Level Scheme (continued) Intensities: Relative photon branching from each level $--- \rightarrow \gamma$ Decay (Uncertain) $\square \begin{bmatrix} \overline{a}_{1,2}^{\dagger}, \\ \overline{a}_{1,2}^{\dagger}, \overline{a}_{1+E_{2}}^{\dagger}, \underline{a}_{1+E_{2}}^{\dagger}, \underline{a}_{2}^{\dagger}, \\ \overline{a}_{1,2}^{\dagger}, \overline{a}_{1+E_{2}}^{\dagger}, \underline{a}_{2}^{\dagger}, \underline{a}_{2}^{$ + 65_{2,4} 100 2589.7+x -9 N $(27/2^+)$ 2 2549.50+x -0-2 1/2,3/2,5/2+ 3 2484.3 ,000 100,00 1/2+,3/2,5/2+ 15,18,2 2455.5 -00 1/2+,3/2,5/2+ 2434.9 13005 \$ (3/2⁻,5/2) + 366 (At) 2422.1 17.3 R 9.3 R 9.3 R 9.4 R 9.4 R 9.4 R 9.1 R 1.7.3 R 2386.7 $(27/2^+)$ 2299.1+x 12103 8 Ş $5/2^{+}$ 2065.82 $(5/2)^+$ 2053.59 888 2034.3 $(27/2^+)$ 1971.3+x 105 ns 75 $\frac{(5/2^-)}{(25/2^+)}$ 1944.24 000 8 \$ -8 \sim 6 1932.3+x 118 ns 28 ő $21/2^+$ 1932.3 *(*6) \$ 2 ${<}40~\mathrm{ns}$ 00 001-55 ×1.8 383. 693. $(5/2^{-})$ 1927.32 1846.0 $\frac{3/2^+}{(5/2^-)}$ 1858.02 1848.16 1/2+,3/2,5/2+ 1817.86 $17/2^{+}$ <u>1746.5</u> 5.1 ns *13* (13/2+) 1501.89 7/2-1441.71 $(5/2)^+$ 1274.45 3/2+ 1086.21 260 ps 30 $(7/2)^{-1}$ 904.23 5/2-¥ ¥ 890.24 1/2+ 846.35 58.5 min 11 9/2-0 103 min 3

 $^{201}_{\ 83}{\rm Bi}_{118}$

Adopted Levels, Gammas

Legend

Level Scheme (continued)

Intensities: Relative photon branching from each level

 γ Decay (Uncertain)

²⁰¹₈₃Bi₁₁₈