Adopted Levels, Gammas

		Tv	ne	Author	History Citation	Literature Cutoff Date					
		Full Ev	aluation	F G Kondey	NDS 187 355 (2023)						
		T ull E v	indution	1. O. Rondev	1(20) 107,000 (2020)	20 500 2022					
$Q(\beta^{-}) = -6682$	<i>13</i> ; S(n)=9	873 26; S(p)=	:1137 <i>11</i> ;	Q(α)=6472.8 1	6 2021Wa16						
					²⁰¹ At Levels						
				Cross R	eference (XREF) Flags						
				A 20 B 19 C 16	⁵ Fr α decay ² Pt(¹⁴ N,5nγ) ⁵ Ho(⁴⁰ Ar,4nγ)						
E(level) [†]	$J^{\pi \ddagger}$	T _{1/2}	XREF			Comments					
0.0	9/2-	87.6 s 13	ABC	%α=71 7; %e	$\approx +\%\beta^+ = 29.7 (1974 \text{Ho} 27)$)					
				$\mu = 4.01 7$							
				Q = -1.05 J ^{π} : Favored α	Q=-1.0 5 J ^{π} : Favored α -decay to the ¹⁹⁷ Bi g.s.(J ^{π} =9/2 ⁻ ,2016Ba42); J=(9/2) in 2018Cu02;						
190.10 <i>10</i>	7/2-		С	T _{1/2} : Unweig (1970DaZN μ ,Q: From the in-source re 45 (stat)57 statistical an Q from -0. in quadratur $\delta < r^2 > (^{201}At,^2$ $E\alpha = 6342$ keV 6347 keV 5 keV 3 (199) configuration: J ^{π} : 190.1 γ M configuration:	hted average of 90 s 6 (1 1), 88 s 5 (1974Ho27) are the measured hyperfine-strue containe-ionization spect (syst), deduced using a r nd systematic uncertaintii 96 15(stat)50(syst) with re (2018Cu02,2021StZZ) 105 At)=-0.197 fm ² 7(stat) 76 (1963Ho18), 6342 kev 5 (1974Ho27), 6345 keV 6 Ta18) and 6343 keV 4 π h ⁹ ₁₂ . 1+E2 to 9/2 ⁻ . π f ⁺¹ _{7/2} .	963Ho18), 90 s 4 (1967Tr06), 87.0 s 6 ad 83 s 2 (1996Ta18). Incure constants and isotope shifts using the roscopy method (2018Cu02). μ from 4.025 eference value of μ (²¹¹ At)=4.139 37, with es added in quadrature (2018Cu02,2019StZV). statistical and systematic uncertainties added b) 10(syst) (2018Cu02). V 3 (1967Tr06), 6340 keV 10 (1970DaZM), 2 (1975BaYJ), 6344 keV (1986Wo03), 6344 (2005De01).					
459.20 <i>14</i>	1/2+	45 ms <i>3</i>	С	%IT=100 J^{π} : 269.1 γ E3 to 7/2 ⁻ . T _{1/2} : From recoil-ce(Δ t) in 2014Au03, where recoils were correlated with the 173 γ and 433 γ above the isomer, and ce were in coincidence with 190 γ and 269 γ , below the isomer.							
631.8 [#] 4	$(3/2^+)$		С	J^{π} : 172.6 γ (M	$11+E2$) to $1/2^+$.						
635.17 ^{&} 16	(13/2-)		BC	J^{π} : 635.1 γ (E)	$\pi d_{3/2}^{-1}$. 2) to 9/2 ⁻ .						
690.98 16	(11/2 ⁻)		с	configuration: J^{π} : 691.1 γ to	dominant π (h ⁺¹ _{9/2}) \otimes 2 ⁺ . 9/2 ⁻ .						
749.36 14	(13/2 ⁺)	15.9 ns 14	BC	configuration: J^{π} : 114.1 γ to $T_{1/2}$: From 7 ² ¹⁶⁵ Ho(⁴⁰ Ar	dominant π (h ⁺¹ ₉₂) $\otimes 2^+$. 13/2 ⁻ , 749.3 γ (M2) to 9 49.0 γ (t) in ¹⁹² Pt(¹⁴ N,5n γ ,4n γ) (2015Au01).	/2 ⁻ ; systematics and shell-model predictions. (1983Dy02). Other ≈ 20 ns in					
804.2 [@] 6	(5/2+)		С	configuration: J^{π} : 172.5 γ to configuration:	$\pi t_{13/2}^{+1}.$ (3/2 ⁺). Probable $\pi d_{5/2}^{-1}.$						

Continued on next page (footnotes at end of table)

²⁰¹At Levels (continued)

E(level) [†]	Jπ‡	T _{1/2}	XREF	Comments
1065.2 [#] 6	$(7/2^+)$		С	J^{π} : 433.3 γ (E2) to (3/2 ⁺).
1228.96 ^{&} 22	$(17/2^{-})$		BC	J^{π} : 583.8 γ (E2) to (13/2 ⁻).
				configuration: π (h ⁺¹ _{q/2}) \otimes 4 ⁺ .
1261.29 20	$(15/2^+)$		С	J^{π} : 511.8 γ D to (13/2 ⁺); 364.1 γ (M1) from (17/2 ⁺).
1288.6 [@] 6	$(9/2^+)$		С	J^{π} : 223.3 γ (M1) to (7/2 ⁺), 484.5 γ (E2) to (5/2 ⁺).
1494.85 19	$(17/2^+)$		BC	J^{π} : 233.4 γ (M1) to (15/2 ⁺), 745.5 γ (E2) to (13/2 ⁺). configuration: Dominant π ($i_{13/2}^{+1}$) $\otimes 2^{+}$.
1613.3 [#] 7	$(11/2^+)$		С	J^{π} : 548.1 γ (E2) to (7/2 ⁺).
1625.34 19	$(17/2^+)$		С	J ^{π} : 130.3 γ (M1) to (17/2 ⁺), 876.1 γ (E2) to (13/2 ⁺). configuration: Dominant π (h ₉ ⁺¹) γ (f ₅ ⁻¹ , i ₁₃ ⁻¹) ₅₋ .
1705.03 ^{&} 24	(21/2 ⁻)		BC	J^{π} : 476.2 γ (E2) to (17/2 ⁻). configuration: a mixture between π (h ⁺¹ ₂) \otimes 6 ⁺ and π [f ⁺¹ ₇₂ (h ⁺² ₂) ₈₊].
1790.3 4			В	$(19/2)^{-1}$
1856.0 [@] 7	$(13/2^+)$		С	J^{π} : 242.8 γ to (11/2 ⁺), 567.3 γ (E2) to (9/2 ⁺).
1921.30 21	$(21/2^+)$		BC	J^{π} : 216.3 γ to (21/2 ⁻), 295.9 γ (E2) to (17/2 ⁺).
				configuration: Dominant π (h ⁺¹ _{9/2}) ν (f ⁻¹ _{5/2} ,i ⁻¹ _{13/2}) ₇₋ .
1980.6 3	$(23/2^{-})$		С	$J^{n}: 275.5\gamma$ (M1) to $(21/2^{-})$.
2004 3 3	$(23/2^{+})$		C	configuration: Dominant π [$f_{7/2}^{-1}$, ($h_{9/2}^{-}$) $_{8+}$]. I π : 83 0 $_{2}$ to (21/2 ⁺) 299 3 $_{2}$ to (21/2 ⁻)
2001.5 5	(23/2)		C	configuration: Dominant π (h ₂ ⁺¹) γ (f _z ⁻¹ i ₁ ⁻¹) _{z₂)₈.}
2050.8 3	$(25/2^+)$	<20 ns	С	J^{π} : 46.5 γ to (23/2 ⁺).
				$T_{1/2}$: An estimate from $\gamma(t)$ in 2015Au01.
2076.0.5	$(22/2^{-1})$		P	configuration: Dominant π (h ⁺¹ _{9/2}) ν (f ⁻¹ _{5/2} , i ⁻¹ _{13/2}) ₉₋ .
2076.9 3	(23/2)		В	J^{*} : $J/1.9\gamma$ D to $(21/2)$; proposed configuration.
2147.2 <mark>&</mark> 4	$(21/2^{-})$		C	I^{π} , 917 8y (F2) to (17/2 ⁻)
2117.2 7	(21/2)		C	configuration: a mixture between π (h ⁺¹ ₀) \otimes 6 ⁺ and π (f ⁺¹ ₇₂ ,(h ⁺² ₀) ₈₊).
2232.1 [#] 9	$(15/2^+)$		С	J^{π} : 618.8 γ (E2) to (11/2 ⁺).
2319.8 3	$(29/2^+)$	3.39 µs 9	С	%IT=100
				J^{π} : 269.0 γ E2 to (25/2 ⁺), 339.2 γ E3 to (23/2 ⁻).
				$T_{1/2}$: From recoil-269 γ (t) using the planar detector data and the logarithmic time scale method (2015Au01). A prompt coincidence with a 296 γ , 427 γ , 594 γ , 635 γ , 746 γ or 749 γ in any of the focal plane clover detectors was also required.
2518.9 5	$(25/2^{-})$		c	$I_{13/2}^{\pi}, I_{13/2}^{\pi}, $
2510.9	(23/2)		C	configuration: Dominant π (h ⁺¹) \otimes 8 ⁺ .
2637.6 5	$(25/2^+)$		С	J^{π} : 716.3 γ (E2) to 21/2 ⁺ .
2990.2 ^{<i>a</i>} 5	(23/2 ⁻)		С	 J^π: 1068.9γ D to (21/2⁺); proposed configuration. E(level): The total transition intensity of 145γ that feeds this level is much higher than the 1069γ one that depopulates it, thus suggesting the existence of at least one additional, unobserved decay branch.
				configuration: π (i ⁺¹ _{13/2}) $\otimes \nu$ (f ⁻¹ _{5/2} , i ⁻¹ _{13/2}) ₅₋ .
3135.2 ^{<i>a</i>} 6	$(25/2^{-})$		C	J^{π} : 145.0 γ (M1) to (23/2 ⁻); band assignment.
3219.2 0	$(33/2^+)$		C C	I^{π} : 921.1 γ (E2) to (29/2 ⁺).
	(00/=)			configuration: Possible π [$_{12/2}^{+1}$,($h_{0/2}^{+2}$) ₈₊] $\otimes 2^+$.
3245.4 6	$(29/2^+)$		C	J^{π} : 607.8 γ (E2) to (25/2 ⁺).
3379.6 ^{<i>a</i>} 7 3504.4.4	$(27/2^{-})$		C	J^{π} : 244.4 γ (M1) to (25/2 ⁻); band assignment.
3621.8 7			c	

²⁰¹At Levels (continued)

E(level) [†]	$J^{\pi \ddagger}$	XREF	Comments
3666.5 ^a 8	$(29/2^{-})$	С	J^{π} : 286.9 γ (M1) to (27/2 ⁻); band assignment.
3693.9 7		С	
3699.7 6		С	
3779.1 6		С	
3785.9 8		С	
3853.3 7		С	
3952.8 6		С	
3983.8 <mark>a</mark> 9	$(31/2^{-})$	С	J^{π} : 317.3 γ (M1) to (29/2 ⁻); band assignment.
4111.4 6		С	
4159.0 7		С	
4256.1 ^{<i>a</i>} 10	$(33/2^{-})$	С	J^{π} : 272.3 γ (M1) to (31/2 ⁻); band assignment.
4454.0 ^{<i>a</i>} 11	$(35/2^{-})$	С	J^{π} : 197.9 γ (M1) to (33/2 ⁻); band assignment.
4789.0 ^{<i>a</i>} 12	(37/2-)	С	J^{π} : 335.0 γ (M1) to (35/2 ⁻); band assignment.

[†] From a least-squares fit to $E\gamma$.

^{\ddagger} From deduced transition multipolarities and the observed decay pattern in ¹⁶⁵Ho(⁴⁰Ar,4n γ) and ¹⁹²Pt(¹⁴N,5n γ), systematics in the region and shell-model predictions, unless otherwise stated. [#] Seq.(B): Based on π (d⁻¹_{3/2}) \otimes^{202} Rn core states ($J^{\pi}=2^+,4^+,6^+$).

^(a) Seq.(C): Based on π (d⁻¹_{5/2}) \otimes^{202} Rn core states ($J^{\pi}=2^+,4^+$). ^(b) Seq.(D): Based on π (h⁺¹_{9/2}) \otimes^{202} Rn core states ($J^{\pi}=2^+,4^+,6^+,8^+$).

^{*a*} Band(A): Magnetic-dipole, shears band. Configuration= π ($i_{13/2}^{+1}$) $\otimes \nu$ ($f_{5/2}^{-1}$, $i_{13/2}^{-1}$) $_{9-}$ for the lower cascade and Configuration = π (h⁺²_{9/2}, i⁺¹_{13/2}) $\otimes \nu$ (f⁻¹_{5/2}, i⁻¹_{13/2})₅₋ above the band crossing.

						Adopted	Levels, Ga	ammas (contin	nued)
							$\gamma(20)$	¹ At)	
E _i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\dagger}	E_{f}	\mathbf{J}_{f}^{π}	Mult. [‡]	δ	α [@]	Comments
190.10	7/2-	190.1 <i>I</i>	100	0.0	9/2-	M1+E2	0.65 8	1.55 7	$\alpha(K)=1.17\ 7;\ \alpha(L)=0.289\ 4;\ \alpha(M)=0.0710\ 12$ $\alpha(N)=0.01838\ 32;\ \alpha(O)=0.00383\ 6;\ \alpha(P)=0.000488\ 8$ Mult., δ : From K/(L+M+)exp=3.1 2 (2014Au03). δ was determined by the bricomizing program
459.20	1/2+	269.1 <i>1</i>	100	190.10	7/2-	E3		1.231 17	$\alpha(K)=0.2270 \ 32; \ \alpha(L)=0.737 \ 10; \ \alpha(M)=0.2028 \ 29 \ \alpha(N)=0.0528 \ 7; \ \alpha(O)=0.01050 \ 15; \ \alpha(P)=0.001115 \ 16 \ B(E3)(W.u.)=0.0493 \ +35-31 \ Wult : Error W(L + M+) \ 0xp=0.24 \ 1 \ (2014Av03)$
631.8	(3/2+)	172.6 4	100	459.20	1/2+	(M1+E2)		1.7 9	Mult.: From K/(L+M+)exp=0.24 <i>I</i> (2014Au05). $\alpha(K)=1.2 \ 9; \ \alpha(L)=0.42 \ 5; \ \alpha(M)=0.106 \ 18$ $\alpha(N)=0.027 \ 5; \ \alpha(O)=0.0056 \ 7; \ \alpha(P)=0.000663 \ 14$ Mult.: R=0.83 5 (2014Au03). The x-ray intensity in a spectrum produced by gating on 533 γ is consistent with Mult=M1+E2, but not with a pure Mult=E2
635.17	(13/2 ⁻)	635.1 2	100	0.0	9/2-	(E2)		0.01951 27	$\alpha(K)=0.01424\ 20;\ \alpha(L)=0.00397\ 6;\ \alpha(M)=0.000985\ 14$ $\alpha(N)=0.000255\ 4;\ \alpha(O)=5.27\times10^{-5}\ 7;\ \alpha(P)=6.54\times10^{-6}\ 9$ Mult.: A ₂ =0.11 3 in 1983Dy02. Other: A ₂ =+0.09 4 (2015Au01).
690.98	$(11/2^{-})$	691.1 2	100	0.0	9/2-				<i>,</i>
749.36	(13/2 ⁺)	58.5 2	4.5 [#] 15	690.98	(11/2 ⁻)	[E1]		0.424 7	B(E1)(W.u.)= $2.1 \times 10^{-6} + 8 - 7$ α (L)= $0.322 5; \alpha$ (M)= $0.0775 13$ α (N)= $0.01963 33; \alpha$ (O)= $0.00389 7; \alpha$ (P)= $0.000436 7$
		114.1 2	9.6 [#] 9	635.17	(13/2 ⁻)	[E1]		0.332 5	B(E1)(W.u.)= $6.1 \times 10^{-7} + 11 - 9$ α (K)= $0.262 \ 4; \ \alpha$ (L)= $0.0538 \ 8; \ \alpha$ (M)= $0.01283 \ 19$ α (N)= $0.00327 \ 5; \ \alpha$ (O)= $0.000668 \ 10; \ \alpha$ (P)= $8.08 \times 10^{-5} \ 12$
		749.3 2	100 [#] 12	0.0	9/2-	(M2)		0.1204 17	α (K)=0.0949 13; α (L)=0.01935 27; α (M)=0.00467 7 α (N)=0.001215 17; α (O)=0.000260 4; α (P)=3.55×10 ⁻⁵ 5 B(M2)(W.u.)=0.183 +18-16 Mult: A ₂ =0.05 3 in 1983Dv02. E3 admixtures are possible.
804.2	$(5/2^+)$	172.5 4	100	631.8	$(3/2^+)$				
1065.2	(7/2 ⁺)	433.3 4	100	631.8	(3/2 ⁺)	(E2)		0.0478 7	$\alpha(K)=0.0307 4; \alpha(L)=0.01275 18; \alpha(M)=0.00326 5$ $\alpha(N)=0.000842 12; \alpha(O)=0.0001713 25; \alpha(P)=2.003\times10^{-5} 29$ Mult : R=1 21 5 (2014An03)
1228.96	(17/2 ⁻)	593.8 2	100	635.17	(13/2 ⁻)	(E2)		0.02262 32	$\alpha(K)=0.01624\ 23;\ \alpha(L)=0.00480\ 7;\ \alpha(M)=0.001198\ 17$ $\alpha(N)=0.000310\ 4;\ \alpha(O)=6.39\times10^{-5}\ 9;\ \alpha(P)=7.85\times10^{-6}\ 11$ Mult.: A ₂ =0.16 5 in 1983Dy02. Other: A ₂ =+0.08 2 (2015Au01).
1261.29 1288.6	(15/2 ⁺) (9/2 ⁺)	511.8 2 223.3 <i>4</i>	100 41.5 <i>24</i>	749.36 1065.2	(13/2 ⁺) (7/2 ⁺)	D (M1)		1.245 19	Mult.: $A_2 = -0.14 \ 3 \ (2015Au01)$. $\alpha(K) = 1.009 \ 15; \ \alpha(L) = 0.1795 \ 27; \ \alpha(M) = 0.0425 \ 6$ $\alpha(N) = 0.01100 \ 16; \ \alpha(O) = 0.002355 \ 35; \ \alpha(P) = 0.000325 \ 5$ Mult.: $A_2 = -0.29 \ 7 \ \text{and} \ P = 0.74 \ 12 \ (2014Au03)$
		484.5 4	100 7	804.2	(5/2+)	(E2)		0.0362 5	$\alpha(K)=0.02440 \ 34; \ \alpha(L)=0.00888 \ 13; \ \alpha(M)=0.002248 \ 32 \ \alpha(N)=0.000581 \ 8; \ \alpha(O)=0.0001189 \ 17; \ \alpha(P)=1.415\times10^{-5} \ 20 \ Mult.: \ A_2=+0.70 \ 6 \ and \ R=1.4 \ 2 \ (2014Au03).$
I									

 $^{201}_{85} At_{116}\text{-}4$

I

$\gamma(^{201}\text{At})$ (continued)

E _i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\dagger}	E_f	\mathbf{J}_f^{π}	Mult. [‡]	$\alpha^{@}$	Comments
1494.85	(17/2+)	233.4 2	19.6 5	1261.29	(15/2+)	(M1)	1.101 16	$\alpha(K)=0.892 \ 13; \ \alpha(L)=0.1586 \ 23; \ \alpha(M)=0.0375 \ 5 \ \alpha(N)=0.00972 \ 14; \ \alpha(O)=0.002081 \ 30; \ \alpha(P)=0.000287 \ 4$
		745.5 2	100 3	749.36	(13/2+)	(E2)	0.01389 <i>19</i>	Mult.: $A_2 = -0.05\ 2\ (2015Au01)$. $\alpha(K) = 0.01048\ 15;\ \alpha(L) = 0.00258\ 4;\ \alpha(M) = 0.000633\ 9$ $\alpha(N) = 0.0001637\ 23;\ \alpha(O) = 3.41 \times 10^{-5}\ 5;\ \alpha(P) = 4.32 \times 10^{-6}\ 6$ Mult: $A_2 = 0.24\ 9 \text{ in } 1083\text{D} \times 02$ Other: $A_3 = 10.4\ 2\ (2015Au01)$
1613.3	(11/2 ⁺)	548.1 <i>4</i>	100	1065.2	(7/2 ⁺)	(E2)	0.0271 4	Mult: $A_2=0.24$ 9 in 1985Dy02: Other: $A_2=+0.4$ 2 (2015Ad01). $\alpha(K)=0.01902$ 27; $\alpha(L)=0.00607$ 9; $\alpha(M)=0.001525$ 22 $\alpha(N)=0.000394$ 6; $\alpha(O)=8.11\times10^{-5}$ 11; $\alpha(P)=9.84\times10^{-6}$ 14 Mult: $A_2=+0.5$ 2 and $B=1.26$ 12 (2014Au03)
1625.34	(17/2 ⁺)	130.3 2	20.1 21	1494.85	(17/2 ⁺)	(M1)	5.69 8	$\alpha(K) = 4.61$ 7; $\alpha(L) = 0.826$ 12; $\alpha(M) = 0.1957$ 29 $\alpha(N) = 0.0507$ 7; $\alpha(O) = 0.01086$ 16; $\alpha(P) = 0.001499$ 22 Mult: $\Delta_2 = -0.36$ 7 (2015Au01).
		364.1 <i>3</i>	33.5 16	1261.29	(15/2 ⁺)	(M1)	0.325 5	$\alpha(K)=0.264 4; \alpha(L)=0.0464 7; \alpha(M)=0.01098 16$ $\alpha(N)=0.00284 4; \alpha(O)=0.000609 9; \alpha(P)=8.41\times10^{-5} 12$ Mult.: A ₂ =-0.11 3 (2015Au01).
		876.1 2	100 3	749.36	(13/2+)	(E2)	0.01002 14	$\alpha(K)=0.00775 \ II; \ \alpha(L)=0.001720 \ 24; \ \alpha(M)=0.000418 \ 6 \ \alpha(N)=0.0001081 \ I5; \ \alpha(O)=2.264 \times 10^{-5} \ 32; \ \alpha(P)=2.93 \times 10^{-6} \ 4 \ Mult: \ \Delta_2=+0.16 \ 3 \ (2015Au01).$
1705.03	(21/2 ⁻)	476.2 2	100	1228.96	(17/2 ⁻)	(E2)	0.0378 5	$\alpha(K)=0.02528\ 35;\ \alpha(L)=0.00938\ 13;\ \alpha(M)=0.002378\ 33$ $\alpha(N)=0.000615\ 9;\ \alpha(O)=0.0001257\ 18;\ \alpha(P)=1.491\times10^{-5}\ 21$ Mult.: A ₂ =0.22 7 in 1983Dy02. Other: A ₂ =+0.13 4 (2015Au01).
1790.3	$(12/2^{+})$	295.5 3	100	1494.85	$(17/2^+)$			E_{γ}, I_{γ} : From ¹⁹² Pt(¹⁴ N, 5n γ).
1850.0	(13/2)	567.3 <i>4</i>	100 5	1288.6	(11/2) $(9/2^+)$	(E2)	0.02506 35	α (K)=0.01776 25; α (L)=0.00548 8; α (M)=0.001373 19 α (N)=0.000355 5; α (O)=7.31×10 ⁻⁵ 10; α (P)=8.92×10 ⁻⁶ 13 Mult.: A ₂ =+0.5 3 and R=1.2 3 (2014Au03).
1921.30	$(21/2^+)$	216.3 3	2.3 [#] 6	1705.03	$(21/2^{-})$	[E1]	0.0696 10	$\alpha(K)=0.0561 \ 8; \ \alpha(L)=0.01026 \ 15; \ \alpha(M)=0.002429 \ 35$
		295.9 2	100 5	1625.34	(17/2+)	(E2)	0.1374 19	$\alpha(N)=0.000623$ 9; $\alpha(O)=0.0001295$ 19; $\alpha(P)=1.648\times10^{-5}$ 24 $\alpha(K)=0.0700$ 10; $\alpha(L)=0.0501$ 7; $\alpha(M)=0.01310$ 19 $\alpha(N)=0.00339$ 5; $\alpha(O)=0.000679$ 10; $\alpha(P)=7.48\times10^{-5}$ 11 Mult : $\Delta = \pm 0.11$ 4 (2015 $\Delta \times 01$)
		426.5 2	98 <i>5</i>	1494.85	(17/2 ⁺)	(E2)	0.0497 7	$\begin{array}{l} \alpha(\mathbf{K}) = 0.0318 \ 4; \ \alpha(\mathbf{L}) = 0.01345 \ 19; \ \alpha(\mathbf{M}) = 0.00344 \ 5 \\ \alpha(\mathbf{N}) = 0.000889 \ 13; \ \alpha(\mathbf{O}) = 0.0001807 \ 25; \ \alpha(\mathbf{P}) = 2.107 \times 10^{-5} \ 30 \\ \end{array}$
1980.6	(23/2 ⁻)	275.5 2	100	1705.03	(21/2 ⁻)	(M1)	0.695 10	$\alpha(K)=0.564 \ 8; \ \alpha(L)=0.1000 \ 14; \ \alpha(M)=0.02365 \ 33 \ \alpha(N)=0.00612 \ 9; \ \alpha(O)=0.001311 \ 19; \ \alpha(P)=0.0001811 \ 26 \ Mult.: \ A_2=-0.47 \ 2 \ (2015Au01).$
2004.3	(23/2+)	83.0 4	100 [#] 33	1921.30	(21/2 ⁺)	[M1]	3.99 8	α (L)=3.04 6; α (M)=0.720 14 α (N)=0.187 4; α (O)=0.0400 8; α (P)=0.00552 11

S

 $^{201}_{85}{\rm At}_{116}$ -5

$\gamma(^{201}\text{At})$ (continued)

E _i (level)	\mathbf{J}_i^{π}	${\rm E_{\gamma}}^{\dagger}$	I_{γ}^{\dagger}	\mathbf{E}_{f}	J_f^π	Mult. [‡]	α [@]	Comments
2004.3	(23/2+)	299.3 2	20 [#] 3	1705.03	(21/2 ⁻)	[E1]	0.0325 5	$\alpha(K)=0.0264 \ 4; \ \alpha(L)=0.00463 \ 7; \ \alpha(M)=0.001093 \ 15$ $\alpha(N)=0.000281 \ 4; \ \alpha(\Omega)=5.88\times10^{-5} \ 8; \ \alpha(P)=7.63\times10^{-6} \ 11$
2050.8 2076.9 2147.2	(25/2 ⁺) (23/2 ⁻) (21/2 ⁻)	46.5 2 371.9 4 442.6 4	100 100 86 <i>3</i>	2004.3 1705.03 1705.03	(23/2 ⁺) (21/2 ⁻) (21/2 ⁻)	D (E2)	0.0453 6	Mult.: $A_2 = -0.1 I$ in 1983Dy02. $\alpha(K) = 0.0294 4; \alpha(L) = 0.01189 17; \alpha(M) = 0.00303 4$ $\alpha(N) = 0.000784 11; \alpha(O) = 0.0001596 23; \alpha(P) = 1.872 \times 10^{-5} 27$
		917.8 4	100 6	1228.96	(17/2 ⁻)	(E2)	0.00914 13	Mult.: A ₂ =+0.35 8 (2015Au01); consistent with Δ J=0 transition. α (K)=0.00711 <i>10</i> ; α (L)=0.001539 22; α (M)=0.000373 5 α (N)=9.64×10 ⁻⁵ <i>14</i> ; α (O)=2.023×10 ⁻⁵ 28; α (P)=2.63×10 ⁻⁶ 4
2232.1	(15/2+)	618.8 <i>6</i>	100	1613.3	(11/2+)	(E2)	0.02065 29	Mult.: $A_2=+0.37 \ 6 \ (2015Au01)$. $\alpha(K)=0.01498 \ 21; \ \alpha(L)=0.00427 \ 6; \ \alpha(M)=0.001062 \ 15$ $\alpha(N)=0.000275 \ 4; \ \alpha(O)=5.68\times10^{-5} \ 8; \ \alpha(P)=7.016\times10^{-6} \ 99$ Mult.: $A_2=+0.6 \ 4$ and $R=1.1 \ 4 \ (2014Au03)$.
2319.8	(29/2+)	269.0 2	100 [#] 9	2050.8	(25/2+)	E2	0.1842 26	$\alpha(K)=0.0865 \ I2; \ \alpha(L)=0.0726 \ I0; \ \alpha(M)=0.01907 \ 27 \ \alpha(N)=0.00493 \ 7; \ \alpha(O)=0.000985 \ I4; \ \alpha(P)=0.0001072 \ I5 \ B(E2)(W.u.)=1.27\times10^{-3} \ 6 \ Mult : From K/(L+M+-)exp=0.93 \ 5 \ (2015Au01)$
		339.2 2	10 [#] 3	1980.6	(23/2 ⁻)	E3	0.464 7	$\alpha(K) = 0.1364 \ 19; \ \alpha(L) = 0.2413 \ 34; \ \alpha(M) = 0.0656 \ 9 \\ \alpha(N) = 0.01707 \ 24; \ \alpha(O) = 0.00341 \ 5; \ \alpha(P) = 0.000371 \ 5 \\ B(E3)(W.u.) = 22 \ 6 \\ M \ k(F_{12}, M_{12}, M_{12}) = 0.45 \ 4 \ (20154, 01) $
2518.9	(25/2 ⁻)	371.7 4	100	2147.2	(21/2 ⁻)	(E2)	0.0715 10	Mult.: From K/(L+M+)exp=0.45 4 (2015A001). $\alpha(K)=0.0425 6; \alpha(L)=0.02159 31; \alpha(M)=0.00557 8$ $\alpha(N)=0.001440 21; \alpha(O)=0.000291 4; \alpha(P)=3.32 \times 10^{-5} 5$
2637.6	(25/2+)	716.3 4	100	1921.30	(21/2 ⁺)	(E2)	0.01509 21	Mult.: $A_2 = +0.16 \ 6 \ (2015A001)$. $\alpha(K) = 0.01130 \ 16; \ \alpha(L) = 0.00286 \ 4; \ \alpha(M) = 0.000705 \ 10$ $\alpha(N) = 0.0001822 \ 26; \ \alpha(O) = 3.79 \times 10^{-5} \ 5; \ \alpha(P) = 4.78 \times 10^{-6} \ 7$ Mult.: $A_2 = +0.46 \ 4 \ (2015A001)$.
2990.2 3135.2	(23/2 ⁻) (25/2 ⁻)	1068.9 ^{&} 4 145.0 4	100 100	1921.30 2990.2	(21/2 ⁺) (23/2 ⁻)	D (M1)	4.20 7	Mult.: $A_2 = -0.47 \ 5 \ (2015Au01)$. $\alpha(K) = 3.40 \ 5; \ \alpha(L) = 0.609 \ 10; \ \alpha(M) = 0.1441 \ 23$ $\alpha(N) = 0.0373 \ 6; \ \alpha(O) = 0.00799 \ 13; \ \alpha(P) = 0.001104 \ 18$ Mult : $A_2 = -0.5 \ 2 \ (2015Au01)$
3219.2 3240.9	(33/2+)	581.6 <i>4</i> 921.1 <i>4</i>	100 100	2637.6 2319.8	(25/2 ⁺) (29/2 ⁺)	D (E2)	0.00908 13	Mult: $A_2 = -0.44$ 7 (2015Au01). $\alpha(K) = 0.00706$ 10; $\alpha(L) = 0.001525$ 21; $\alpha(M) = 0.000370$ 5 $\alpha(N) = 9.56 \times 10^{-5}$ 13; $\alpha(O) = 2.005 \times 10^{-5}$ 28; $\alpha(P) = 2.61 \times 10^{-6}$ 4 Mult: $A_2 = -0.20$ 2 (2015Au01)
3245.4	(29/2+)	607.8 4	100	2637.6	(25/2+)	(E2)	0.02148 <i>30</i>	$\alpha(K) = 0.01551 \ 22; \ \alpha(L) = 0.00449 \ 6; \ \alpha(M) = 0.001119 \ 16$ $\alpha(N) = 0.00289 \ 4; \ \alpha(O) = 5.98 \times 10^{-5} \ 8; \ \alpha(P) = 7.37 \times 10^{-6} \ 10$ Mult.: A ₂ =+0.35 8 (2015Au01).
3369.6 3379.6	(27/2 ⁻)	1049.9 ^{&} 4 244.4 4	100 100	2319.8 3135.2	(29/2 ⁺) (25/2 ⁻)	D (M1)	0.968 14	Mult.: A ₂ =-0.7 3 (2015Au01). α (K)=0.785 12; α (L)=0.1395 21; α (M)=0.0330 5

6

						Adopte	d Levels, Ga	mmas (continued)
							γ ⁽²⁰¹ At) (c	continued)
E _i (level)	J_i^π	E_{γ}^{\dagger}	I_{γ}^{\dagger}	E_f	\mathbf{J}_f^{π}	Mult. [‡]	α [@]	Comments
								α (N)=0.00855 <i>13</i> ; α (O)=0.001830 <i>27</i> ; α (P)=0.000253 <i>4</i> Mult.: A ₂ =-0.59 <i>9</i> (2015Au01).
3504.4		135.0 <mark>&</mark> 4	29.4 24	3369.6				2
		263.6 4	71 12	3240.9	$(33/2^+)$	D		Mult.: $A_2 = -0.26 \ 9 \ (2015 Au 01)$.
		1184.5 <i>4</i>	100 12	2319.8	$(29/2^+)$	D,Q		Mult.: $A_2 = +0.40 \ 8 \ (2015 Au 01)$.
3621.8		402.6 4	100	3219.2		D		Mult.: $A_2 = -0.7 2$ (2015Au01).
3666.5	$(29/2^{-})$	286.9 4	100	3379.6	$(27/2^{-})$	(M1)	0.622 9	$\alpha(K)=0.505\ 7;\ \alpha(L)=0.0894\ 13;\ \alpha(M)=0.02113\ 31$
								$\alpha(N)=0.00547 \ 8; \ \alpha(O)=0.001172 \ 17; \ \alpha(P)=0.0001619 \ 24$
2602.0		440 5 4	100	2245 4	(20 /2+)	P		Mult.: $A_2 = -0.473$ (2015Au01).
3693.9		448.5 4	100	3245.4	(29/2+)	D		Mult.: $A_2 = -0.4 2$ (2015Au01).
3699.7		1379.9 ^{x} 5	100	2319.8	$(29/2^+)$			
3779.1		538.2 4	100	3240.9	$(33/2^+)$			
3785.9		540.5 5	100	3245.4	$(29/2^{+})$			
3853.3		153.6 ^{x} 4	100	3699.7				
3952.8	(24/2-)	448.4 4	100	3504.4	(80)	D		Mult.: $A_2 = -0.3 2$ (2015Au01).
3983.8	(31/2 ⁻)	317.3 4	100	3666.5	(29/2 ⁻)	(M1)	0.472 7	α (K)=0.383 6; α (L)=0.0677 10; α (M)=0.01601 23 α (N)=0.00415 6; α (O)=0.000888 13; α (P)=0.0001226 18 Mult.: A ₂ =-0.81 9 (2015Au01).
4111.4		870.5 <mark>&</mark> 4	100	3240.9	$(33/2^+)$			
4159.0		206.2 4	100	3952.8	(00/2)			
4256.1	(33/2 ⁻)	272.3 4	100	3983.8	(31/2 ⁻)	(M1)	0.718 10	$\alpha(K)=0.583 \ 8; \ \alpha(L)=0.1033 \ 15; \ \alpha(M)=0.0244 \ 4$ $\alpha(N)=0.00633 \ 9; \ \alpha(O)=0.001355 \ 20; \ \alpha(P)=0.0001871 \ 27$ Mult $\Delta a = 0.45 \ 11 \ (2015 \ 0.01)$
4454.0	(35/2 ⁻)	197.9 <i>4</i>	100	4256.1	(33/2 ⁻)	(M1)	1.745 26	$\begin{array}{l} \alpha(\mathbf{K}) = 1.414 \ 21; \ \alpha(\mathbf{L}) = 0.252 \ 4; \ \alpha(\mathbf{M}) = 0.0596 \ 9 \\ \alpha(\mathbf{N}) = 0.01545 \ 23; \ \alpha(\mathbf{O}) = 0.00331 \ 5; \ \alpha(\mathbf{P}) = 0.000457 \ 7 \\ \mathbf{Mult} : \ \Delta_{\mathbf{Q}} = -0.80 \ 12 \ (2015 \ 4u01) \end{array}$
4789.0	(37/2 ⁻)	335.0 4	100	4454.0	(35/2 ⁻)	(M1)	0.407 6	$\alpha(K) = 0.3315; \alpha(L) = 0.05838; \alpha(M) = 0.0137920$ $\alpha(N) = 0.003575; \alpha(O) = 0.00076511; \alpha(P) = 0.000105615$ Mult.: A ₂ =-0.664 (2015Au01).

[†] From ¹⁶⁵Ho(⁴⁰Ar,4n γ), unless otherwise stated. [‡] Based on the angular distribution data in ¹⁶⁵Ho(⁴⁰Ar,4n γ), unless otherwise stated. [#] Determined by the evaluator from I(γ +ce) in ¹⁶⁵Ho(⁴⁰Ar,4n γ) and α . [@] Additional information 1. [&] Placement of transition in the level scheme is uncertain.

-

Legend

Adopted Levels, Gammas

Level Scheme

Intensities: Relative photon branching from each level

 $^{201}_{85}{\rm At}_{116}$

Adopted Levels, Gammas

Level Scheme (continued)

Intensities: Relative photon branching from each level

 $^{201}_{85}{\rm At}_{116}$

Adopted Levels, Gammas

