¹⁶⁵Ho(⁴⁰Ar,4nγ) **2014Au03,2015Au01**

		History	
Туре	Author	Citation	Literature Cutoff Date
Full Evaluation	F. G. Kondev	NDS 187,355 (2023)	20-Sep-2022

2014Au03,2015Au01: ⁴⁰Ar⁸⁺, E=205–MeV, I=11 pnA beam from the K-130 cyclotron at the University of Jyvaskyla Accelerator Lab. Target: self-supporting 350– μ g/cm² thick ¹⁶⁵Ho. Detectors: The JUROGAM2 array consisting of Compton-suppressed 24 Clover and 15 Phase-1 and GASP type HPGe detectors. The fusion-evaporation residues (recoils) were separated from the primary beam and other unwanted particles using the gas-filled recoil separator RITU and studied at the focal plane using the GREAT spectrometer. The recoils were implanted onto 300 μ m DSSD surrounded by 28 Si PIN diodes to measure the α particle and ce energies. γ rays at the focal plane were measured using three Clover and one planar type HPGe detector. Measured: E γ , I γ , ce, $\gamma\gamma$ coin, γ -recoil e⁻ coin, recoil e⁻ tagged prompt γ , recoil e⁻ tagged prompt γ -delayed γ coin, recoil e⁻ tagged prompt γ -prompt γ coin, $\gamma(\theta)$, and isomer half-life. Deduced levels, isomer, J, π , multipolarity, configuration, bands.

²⁰¹At Levels

E(level) [†]	Jπ‡	T _{1/2}	Comments
0.0	9/2-	87.6 s <i>13</i>	$J^{\pi}, T_{1/2}$: From Adopted Levels.
190.10 10	7/2-		Possible configuration= $\pi f_{7/2}^{+1}$.
459.20 14	$1/2^{+}$	45 ms <i>3</i>	%IT=100
			Proposed configuration= $\pi s_{1/2}^{-1}$. T _{1/2} : From recoil-ce(Δt) in 2014Au03, where recoils were correlated with the 173 γ and 433 γ above the isomer, and ce were in coincidence with 190 γ and 269 γ below the isomer. The value was deduced using the logarithmic time-scale method.
631.8 [#] 4	3/2+		Proposed configuration= $\pi d_{3/2}^{-1}$.
635.17 16	$13/2^{-}$		Configuration= π (h ⁺¹ _{9/2}) \otimes 2 ⁺ .
690.98 <i>16</i>	$11/2^{-}$		Configuration= π (h ^{$+\Gamma$} _{9/2}) \otimes 2 ⁺ .
749.36 14	$13/2^{+}$	≈20 ns	$T_{1/2}$: from $\gamma(t)$ in 2015Au01.
0			Configuration= $\pi i_{13/2}^{+1}$.
804.2 ⁶ 6	5/2+		Proposed configuration= $\pi d_{5/2}^{-1}$.
1065.2 [#] 6	7/2+		
1228.96 22	17/2-		Configuration= π (h ⁺¹ _{9/2}) \otimes 4 ⁺ .
1261.29 20	$15/2^+$		
1288.6 ^{@} 6	9/2+		
1494.85 19	$17/2^{+}$		Dominant configuration= π (i ⁺¹ _{13/2}) \otimes 2 ⁺ .
1613.3 [#] 7	$11/2^{+}$		
1625.34 19	$17/2^{+}$		Dominant configuration= π (h ⁺¹ _{9/2}) ν (f ⁻¹ _{5/2} ,i ⁻¹ _{13/2}) ₅₋ .
1705.03 24	$21/2^{-}$		Dominant configuration= π (h ⁺¹ _{9/2}) \otimes 6 ⁺ .
1856.0 [@] 7	$13/2^{+}$		
1921.30 <i>21</i>	$21/2^{+}$		Dominant configuration= π (h ⁺¹ _{9/2}) ν (f ⁻¹ _{5/2} ,i ⁻¹ _{13/2}) ₇₋ .
1980.6 <i>3</i>	23/2-		Dominant configuration= $\pi [f_{7/2}^{+1}, (h_{9/2}^{+2})_{8+}].$
2004.3 3	$23/2^+$	•	Dominant configuration= π (h ⁺¹ _{9/2}) ν (f ⁻¹ _{5/2} ,i ⁻¹ _{13/2}) ₈₋ .
2050.8 3	$25/2^+$	<20 ns	$T_{1/2}$: prompt-like time distribution suggests that the half-life is much shorter than 20 ns.
0147.0.4	01/0-		Dominant configuration= π (h ⁺¹ _{9/2}) ν (t ⁻¹ _{5/2} , t ⁻¹ _{13/2}) ₉₋ .
2147.24	21/2		Dominant configuration= $\pi (r_{7/2}) \otimes \nu (r_{13/2})_{8+}$.
2232.1" 9	$\frac{15}{2^+}$	2.20 0	<i>d</i> m 100
2319.8 3	29/21	3.39 µs 9	%11=100
			method (2015Au01). A prompt coincidence with a 296 γ , 427 γ , 594 γ , 635 γ , 746 γ or 749 γ in any of the focal plane clover detectors was also required. Dominant configuration= π [i ⁺¹ _{1/2} , (h ⁺² _{0/2}) ₈₊].
2518.9 5	$25/2^{-}$		Configuration= π (h ⁺¹ ₀₀) \otimes 8 ⁺ .
2637.6 5	$(25/2^+)$		ζ (y <i>L</i> '
2990.2 ^{&} 5	(23/2 ⁻)		E(level): The total transition intensity of 145γ that feeds this level is much higher than

Continued on next page (footnotes at end of table)

$^{165}\text{Ho}(^{40}\text{Ar,4n}\gamma)$ 2014Au03,2015Au01 (continued)

²⁰¹At Levels (continued)

E(level) [†]	$J^{\pi \ddagger}$	Comments
		the 1069γ one that depopulates it, thus suggesting the existence of at least one additional, unobserved decay branch.
		Configuration= π ($i_{13/2}^{+1}$) $\otimes \nu$ ($f_{5/2}^{-1}, i_{13/2}^{-1}$)5
3135.2 ^{&} 6 3219.2 6	(25/2 ⁻)	
3240.9 5	$(33/2^+)$	Possible configuration= $\pi \left[i_{1+2}^{+1}, (h_{-2}^{+2})_{8+} \right] \otimes 2^{+}$.
3245.4 6	$(29/2^+)$	$c = \frac{13/2}{9/2} \frac{9/2}{9/2}$
3369.6 5		
3379.6 <mark>&</mark> 7	$(27/2^{-})$	
3504.4 4		
3621.8 7		
3666.5? <mark>&</mark> 8	$(29/2^{-})$	
3693.9 7		
3699.7 6		
3779.1 6		
3785.9 8		
3853.3 7		
3932.8 0	(01/0-)	
3983.8 9	(31/2)	
4111.4 0		
4139.07	(22/2-)	
4256.1 10	$(33/2^{-})$	
4454.0 ^{x} 11	$(35/2^{-})$	
4789.0 ^{&} 12	$(37/2^{-})$	

[†] From a least-squares fit to $E\gamma$.

[‡] From 2014Au03 and 2015Au01, based on the deduced γ -ray transition multipolarities using the $\gamma(\theta)$ analysis, observed decay pattern, systematics in the region and shell-model assignments. # Seq.(B): Based on π (d⁻¹_{3/2}) \otimes^{202} Rn core states ($J^{\pi}=2^+,4^+,6^+$). @ Seq.(C): Based on π (d⁻¹_{5/2}) \otimes^{202} Rn core states ($J^{\pi}=2^+,4^+$).

& Band(A): Magnetic-dipole, shears band. Configuration= π ($i_{13/2}^{+1}$) $\otimes \nu$ ($f_{5/2}^{-1}, i_{13/2}^{-1}$) $_{9-}$ for the lower cascade and Configuration= π (h⁺²_{9/2}, i⁺¹_{13/2}) $\otimes \nu$ (f⁻¹_{5/2}, i⁻¹_{13/2})₅₋ above the band crossing.

					¹⁶⁵ Ho (⁴⁰) A r,4n γ)	2014Au03,2	2015Au01	(continued)
							$\gamma(^{201}\text{At})$		
E_{γ}^{\dagger}	I_{γ}^{\dagger}	E _i (level)	\mathbf{J}_i^π	E_f	\mathbf{J}_f^{π}	Mult. ^f	α^{g}	$I_{(\gamma+ce)}^{b}$	Comments
46.5 2 58.5 2		2050.8 749.36	25/2 ⁺ 13/2 ⁺	2004.3 690.98	23/2 ⁺ 11/2 ⁻	[E1]	0.424 7	90 <i>30</i> 6 2	$\begin{split} & E_{\gamma}, I_{(\gamma+ce)}: \text{ from recoil-gated planar singles spectrum.} \\ & \text{ce}(L)/(\gamma+ce) = 0.2262 \ 30; \ \text{ce}(M)/(\gamma+ce) = 0.0545 \ 9 \\ & \text{ce}(N)/(\gamma+ce) = 0.01379 \ 24; \ \text{ce}(O)/(\gamma+ce) = 0.00274 \ 5; \\ & \text{ce}(P)/(\gamma+ce) = 0.000306 \ 5 \\ & \alpha(L) = 0.322 \ 5; \ \alpha(M) = 0.0775 \ 13 \\ & \alpha(N) = 0.01963 \ 33; \ \alpha(O) = 0.00389 \ 7; \ \alpha(P) = 0.000436 \ 7 \end{split}$
83.0 4		2004.3	23/2+	1921.30	21/2+	[M1]	3.99 8	120 40	E _y : from recoil-gated planar singles spectrum. ce(L)/(γ +ce)=0.609 8; ce(M)/(γ +ce)=0.1443 33 ce(N)/(γ +ce)=0.0374 9; ce(O)/(γ +ce)=0.00800 20; ce(P)/(γ +ce)=0.001105 28 α (L)=3.04 6; α (M)=0.720 14 α (N)=0.187 4; α (O)=0.0400 8; α (P)=0.00552 11 E _y : calculated value using the assumption that in a closed loop of transitions, the energy shift is zero. Two loops were used, weighted average of those results given here; partially overlaps with the K α x-ray peak
114.1 ^{<i>a</i>} 2		749.36	13/2+	635.17	13/2-	[E1]	0.332 5	12 <i>I</i>	ce(K)/(γ +ce)=0.1965 23; ce(L)/(γ +ce)=0.0404 6; ce(M)/(γ +ce)=0.00963 15 ce(N)/(γ +ce)=0.00246 4; ce(O)/(γ +ce)=0.000502 8; ce(P)/(γ +ce)=6.07×10 ⁻⁵ 9 α (K)=0.262 4; α (L)=0.0538 8; α (M)=0.01283 19 α (K)=0.00327 5; α (O)=0.000668 10; α (P)=8.08×10 ⁻⁵ 12
130.3 ^{<i>a</i>} 2	3.9 <i>4</i>	1625.34	17/2+	1494.85	17/2+	(M1)	5.69 8	20 3	$\begin{aligned} & \alpha(N)=0.00327 \ 9, \ \alpha(O)=0.000000 \ 10, \ \alpha(T)=0.008\times10^{-1}12 \\ & ce(K)/(\gamma+ce)=0.688 \ 6; \ ce(L)/(\gamma+ce)=0.1235 \ 22; \\ & ce(M)/(\gamma+ce)=0.00758 \ 15; \ ce(O)/(\gamma+ce)=0.001623 \ 31; \\ & ce(P)/(\gamma+ce)=0.000224 \ 4 \\ & \alpha(K)=4.61 \ 7; \ \alpha(L)=0.826 \ 12; \ \alpha(M)=0.1957 \ 29 \\ & \alpha(N)=0.0507 \ 7; \ \alpha(O)=0.01086 \ 16; \ \alpha(P)=0.001499 \ 22 \\ & Mult.: \ A2=-0.36 \ 7 \ (2015Au01). \end{aligned}$
135.0 ⁴ 145.0 <i>4</i>	3.7 <i>3</i>	3135.2	(25/2 ⁻)	2990.2	(23/2 ⁻)	(M1) ^{&}	4.20 7		$\alpha(K)=3.40 5; \alpha(L)=0.609 10; \alpha(M)=0.1441 23 \alpha(N)=0.0373 6; \alpha(O)=0.00799 13; \alpha(P)=0.001104 18$
$153.6^{h} 4$	$0.47^{@}$ 4	3853.3	5/0+	3699.7	2/0+				MUUL. A2 = -0.5 2 (2013A001).
172.6 ^{dc} 4	$\frac{18^{46}}{113} \frac{1}{3} \frac{1}{5}$	804.2 631.8	5/2 ⁺ 3/2 ⁺	631.8 459.20	3/2 ' 1/2+	(M1+E2)	1.7 9		α (K)=1.2 9; α (L)=0.42 5; α (M)=0.106 18 α (N)=0.027 5; α (O)=0.0056 7; α (P)=0.000663 14 Mult.: R=0.83 5 (2014Au03). The x-ray intensity in a spectrum produced by gating on 533 γ is consistent with Mult=M1+E2, but not with a pure Mult=E2.

ω

						¹⁶⁵ Ho	(⁴⁰ Ar,4n γ)	2014A	.u03,2015Au(01 (continu	ed)
								$\gamma(^{201}\text{At})$ (continued)		
	E_{γ}^{\dagger}	I_{γ}^{\dagger}	E _i (level)	\mathbf{J}_i^π	E_f	J_f^π	Mult. ^f	δ	α ^g	$I_{(\gamma+ce)}^{b}$	Comments
	190.1 <i>I</i>		190.10	7/2-	0.0	9/2-	M1+E2	0.65 8	1.55 7		α(K)=1.17 7; α(L)=0.289 4; α(M)=0.0710 12 α(N)=0.01838 32; α(O)=0.00383 6; α(P)=0.000488 8 Eγ: From 2014Au03. Mult.,δ: From K/(L+M+)exp=3.1 2 (2014Au03). δ was determined by the evaluator using the briccmixing program.
	197.9 <i>4</i>	1.6 2	4454.0	(35/2 ⁻)	4256.1	(33/2 ⁻)	(M1) ^{&}		1.745 26		α (K)=1.414 21; α (L)=0.252 4; α (M)=0.0596 9 α (N)=0.01545 23; α (O)=0.00331 5; α (P)=0.000457 7 Mult.: A2=-0.80 12 (2015Au01).
	206.2 <i>4</i> 216.3 ^{<i>a</i>} 3	0.31 5	4159.0 1921.30	21/2+	3952.8 1705.03	21/2-	[E1]		0.0696 10	1.3 3	ce(K)/(γ +ce)=0.0525 7; ce(L)/(γ +ce)=0.00960 14; ce(M)/(γ +ce)=0.002271 33 ce(N)/(γ +ce)=0.000582 8; ce(O)/(γ +ce)=0.0001211 17; ce(P)/(γ +ce)=1.541×10 ⁻⁵ 22 α (K)=0.0561 8; α (L)=0.01026 15; α (M)=0.002429 35 α (N)=0.000623 9; α (O)=0.0001295 19; α (P)=1.648×10 ⁻⁵ 24
4	223.3 ^c 4 233.4 ^a 2	17 ^c 1 14.5 4	1288.6 1494.85	9/2+ 17/2+	1065.2 1261.29	7/2 ⁺ 15/2 ⁺	(M1) (M1)		1.101 <i>16</i>	24 3	Mult.: A2=-0.29 7 and R=0.74 <i>12</i> (2014Au03). ce(K)/(γ +ce)=0.425 <i>4</i> ; ce(L)/(γ +ce)=0.0755 <i>11</i> ; ce(M)/(γ +ce)=0.01786 <i>28</i> ce(N)/(γ +ce)=0.00463 7; ce(O)/(γ +ce)=0.000991 <i>16</i> ; ce(P)/(γ +ce)=0.0001368 <i>22</i> α (K)=0.892 <i>13</i> ; α (L)=0.1586 <i>23</i> ; α (M)=0.0375 5 α (N)=0.00972 <i>14</i> ; α (O)=0.002081 <i>30</i> ; α (P)=0.000287 <i>4</i> Mult : A2=-0.05 2 (2015Au01)
	242.8 [°] 7	5.7 <mark>ec</mark> 5	1856.0	$13/2^{+}$	1613.3	$11/2^{+}$					
	244.4 4	8.3 5	3379.6	(27/2 ⁻)	3135.2	(25/2 ⁻)	(M1) ^{&}		0.968 14		α (K)=0.785 <i>12</i> ; α (L)=0.1395 <i>21</i> ; α (M)=0.0330 <i>5</i> α (N)=0.00855 <i>13</i> ; α (O)=0.001830 <i>27</i> ; α (P)=0.000253 <i>4</i> Mult.: A2=-0.59 <i>9</i> (2015Au01).
	263.6 <i>4</i> 269.0 <i>2</i>	1.2 [@] 2	3504.4 2319.8	29/2+	3240.9 2050.8	(33/2 ⁺) 25/2 ⁺	D E2		0.1842 26	118 <i>11</i>	Mult.: A2=-0.26 9 (2015Au01). ce(K)/(γ +ce)=0.0731 10; ce(L)/(γ +ce)=0.0613 8; ce(M)/(γ +ce)=0.01610 23 ce(N)/(γ +ce)=0.00416 6; ce(O)/(γ +ce)=0.000832 12; ce(P)/(γ +ce)=9.05×10 ⁻⁵ 13 α (K)=0.0865 12; α (L)=0.0726 10; α (M)=0.01907 27 α (N)=0.00493 7; α (O)=0.000985 14; α (P)=0.0001072 15
	269.1 <i>1</i>		459.20	1/2+	190.10	7/2-	E3		1.231 17		$\alpha(K)=0.2270\ 32;\ \alpha(L)=0.737\ 10;\ \alpha(M)=0.2028\ 29$

					¹⁶⁵ H o	(⁴⁰ Ar,4n γ)) 2014Au 0	3,2015Au(01 (continued)
							$\gamma(^{201}\text{At})$ (co	ntinued)	
${\rm E_{\gamma}}^{\dagger}$	I_{γ}^{\dagger}	E _i (level)	\mathbf{J}_i^π	\mathbf{E}_{f}	J_f^π	Mult. ^f	α^{g}	$I_{(\gamma+ce)}^{b}$	Comments
272.3 4	3.5 3	4256.1	(33/2 ⁻)	3983.8	(31/2 ⁻)	(M1) ^{&}	0.718 10		$\alpha(N)=0.0528\ 7;\ \alpha(O)=0.01050\ 15;\ \alpha(P)=0.001115\ 16$ $E_{\gamma}:$ From 2014Au03. Mult.: From K/(L+M+)exp=0.24 1 (2014Au03). $\alpha(K)=0.583\ 8;\ \alpha(L)=0.1033\ 15;\ \alpha(M)=0.0244\ 4$ $\alpha(N)=0.00633\ 9;\ \alpha(O)=0.001355\ 20;\ \alpha(P)=0.0001871\ 27$ Mult: $\Delta 2=-0.45\ 11\ (2015\Delta v01)$
275.5 ^a 2	6.6.2	1980.6	$23/2^{-}$	1705.03	$21/2^{-}$	(M1)		12.2	Mult: $A2=-0.472$ (2015Au01).
286.9 4	6.6 4	3666.5?	(29/2 ⁻)	3379.6	(27/2 ⁻)	(M1) ^{&}	0.622 9		$\alpha(K)=0.505\ 7;\ \alpha(L)=0.0894\ 13;\ \alpha(M)=0.02113\ 31$ $\alpha(N)=0.00547\ 8;\ \alpha(O)=0.001172\ 17;\ \alpha(P)=0.0001619\ 24$ Mult : $A2=-0.47\ 3$ (2015Au01)
295.9 ^{<i>a</i>} 2	40 2	1921.30	21/2+	1625.34	17/2+	(E2)	0.1374 <i>19</i>	60 <i>6</i>	ce(K)/(γ+ce)=0.0616 8; ce(L)/(γ+ce)=0.0440 6; ce(M)/(γ+ce)=0.01151 16 ce(N)/(γ+ce)=0.00298 4; ce(O)/(γ+ce)=0.000597 9; ce(P)/(γ+ce)=6.58×10 ⁻⁵ 9 α (K)=0.0700 10; α (L)=0.0501 7; α (M)=0.01310 19 α (N)=0.00339 5; α (O)=0.000679 10; α (P)=7.48×10 ⁻⁵ 11 Mult.: A2=+0.11 4 (2015Au01).
^x 297.5 [‡] 4 299.3 ^a 2	3.0 [@] 2	2004.3	23/2+	1705.03	21/2-	[E1]	0.0325 5	5.0 7	ce(K)/(γ +ce)=0.02556 35; ce(L)/(γ +ce)=0.00449 6; ce(M)/(γ +ce)=0.001059 15 ce(N)/(γ +ce)=0.000272 4; ce(O)/(γ +ce)=5.69×10 ⁻⁵ 8; ce(P)/(γ +ce)=7.39×10 ⁻⁶ 10 α (K)=0.0264 4; α (L)=0.00463 7; α (M)=0.001093 15 c(D) 0.00294 4; α (L)=0.00463 7; α (M)=0.001093 15
317.3 4	6.7 4	3983.8	(31/2 ⁻)	3666.5?	(29/2 ⁻)	(M1) ^{&}	0.472 7		$\alpha(N)=0.0002814; \alpha(O)=3.88\times10^{-5} 8; \alpha(P)=7.63\times10^{-5} 11$ $\alpha(K)=0.3836; \alpha(L)=0.067710; \alpha(M)=0.0160123$ $\alpha(N)=0.004156; \alpha(O)=0.00088813; \alpha(P)=0.000122618$ Mult: A2=-0.819 (2015An01)
335.0 4	1.5 2	4789.0	(37/2 ⁻)	4454.0	(35/2-)	(M1) ^{&}	0.407 6		$\alpha(K)=0.331\ 5;\ \alpha(L)=0.0583\ 8;\ \alpha(M)=0.01379\ 20$ $\alpha(N)=0.00357\ 5;\ \alpha(O)=0.000765\ 11;\ \alpha(P)=0.0001056\ 15$ Mult.: A2=-0.66 4 (2015Au01).
339.2 2		2319.8	29/2+	1980.6	23/2-	E3	0.464 7	14 5	$\begin{array}{l} {\rm ce}({\rm K})/(\gamma+{\rm ce})=0.0931 \ I3; \ {\rm ce}({\rm L})/(\gamma+{\rm ce})=0.1648 \ 2I; \\ {\rm ce}({\rm M})/(\gamma+{\rm ce})=0.0448 \ 6 \\ {\rm ce}({\rm N})/(\gamma+{\rm ce})=0.01166 \ I7; \ {\rm ce}({\rm O})/(\gamma+{\rm ce})=0.002331 \ 35; \\ {\rm ce}({\rm P})/(\gamma+{\rm ce})=0.000253 \ 4 \\ \alpha({\rm K})=0.1364 \ I9; \ \alpha({\rm L})=0.2413 \ 34; \ \alpha({\rm M})=0.0656 \ 9 \\ \alpha({\rm N})=0.01707 \ 24; \ \alpha({\rm O})=0.00341 \ 5; \ \alpha({\rm P})=0.000371 \ 5 \\ {\rm Mult.: \ From \ K/(L+M+)exp=0.45 \ 4 \ (2015Au01). \ The \ 339\gamma} \\ {\rm K-conversion \ peak \ overlaps \ with \ the \ L+M+ \ conversion \ peaks \ from \ the \ 269- \ and \ 276-keV \ transitions. \ The \ number \ of \ 269- \\ {\rm and \ 276-keV \ L+M+ \ conversion \ events \ were \ estimated \ using \ } \end{array}$

S

					¹⁶⁵ Ho	(⁴⁰ Ar,4n γ)) 2014Au03	,2015Au01	(continued)
							$\gamma(^{201}\text{At})$ (cont	tinued)	
E_{γ}^{\dagger}	I_{γ}^{\dagger}	E _i (level)	\mathbf{J}_i^{π}	E_f	J_f^π	Mult. ^f	α^{g}	$I_{(\gamma+ce)}^{b}$	Comments
364.1 ^{<i>a</i>} 3	6.5 3	1625.34	17/2+	1261.29	15/2+	(M1)	0.325 5	8 2	Iγ(269γ)/Iγ(276γ), the number of observed 269- and 276-keV K conversion events, and the theoretical K/(L+M+) ratios for the 269-keV E2 and 276-keV M1 transitions. ce(K)/(γ+ce)=0.1991 23; ce(L)/(γ+ce)=0.0351 5; ce(M)/(γ+ce)=0.00829 12 ce(N)/(γ+ce)=0.002146 31; ce(O)/(γ+ce)=0.000459 7; ce(P)/(γ+ce)=6.35×10 ⁻⁵ 9 α (K)=0.264 4; α (L)=0.0464 7; α (M)=0.01098 16 α (N)=0.00284 4; α (O)=0.000609 9; α (P)=8.41×10 ⁻⁵ 12 Mult: A2=-0.11.3 (2015A)(1)
371.7.4	10.9 4	2518.9	25/2-	2147.2	$21/2^{-}$	(E2)			Mult.: $A2=-0.11$ 5 (2015Au01). Mult.: $A2=+0.16$ 6 (2015Au01).
402.6 4	$2.6^{\#}$ 3	3621.8	=0/=	3219.2	=-/=	(22) D			Mult.: $A2=-0.72$ (2015Au01).
426.5 ^{<i>a</i>} 2	39 2	1921.30	21/2+	1494.85	17/2+	(E2)	0.0497 7	69 9	ce(K)/(γ +ce)=0.0303 4; ce(L)/(γ +ce)=0.01281 18; ce(M)/(γ +ce)=0.00327 5 ce(N)/(γ +ce)=0.000847 12; ce(O)/(γ +ce)=0.0001721 24; ce(P)/(γ +ce)=2.007×10 ⁻⁵ 28 α (K)=0.0318 4; α (L)=0.01345 19; α (M)=0.00344 5 α (N)=0.000889 13; α (O)=0.0001807 25; α (P)=2.107×10 ⁻⁵ 30 Mult : A2=+0.14 7 (2015Au01).
433.3 ^c 4 442.6 4	$100^{\circ} 4$ 6.0 2	1065.2 2147.2	7/2 ⁺ 21/2 ⁻	631.8 1705.03	3/2 ⁺ 21/2 ⁻	(E2) (E2)			Mult.: R=1.21 5 (2014Au03). Mult.: A2=+0.35 8 (2015Au01); consistent with $\Delta J=0$ transition.
448.4 <i>4</i>	$2.9^{@} 2$	3952.8		3504.4		D			Mult.: $A2=-0.3 2 (2015Au01)$.
448.5 4	$2.8^{\#} 2$	3693.9		3245.4	$(29/2^+)$	D			Mult.: $A2=-0.4$ 2 (2015Au01).
476.2 ^{<i>a</i>} 2	33 1	1705.03	$21/2^{-}$	1228.96	17/2-	(E2)		21 4	Mult.: $A2=+0.13 4$ (2015Au01).
484.5 [°] 4	41 [°] 3	1288.6	9/2+	804.2	5/2+	(E2)			Mult.: A2=+0.70 6 and R=1.4 2 (2014Au03).
511.8 ^{<i>a</i>} 2	@ -	1261.29	$15/2^{+}$	749.36	13/2+	D		38 7	Mult.: $A2=-0.14 \ 3 \ (2015Au01)$.
538.2 4	2.9 ^{ee} 2	3779.1		3240.9	$(33/2^+)$				
540.5 5	3.1" 3	3785.9	11/2+	3245.4	$(29/2^+)$	(E 2)			Mult: $A_{2-1} = 0.5.2$ and $B_{-1} = 1.26.12$ (2014 App2)
$567.3^{\circ}.4$	$37^{\circ} 2$	1856.0	$13/2^+$	1288.6	$9/2^+$	(E2)			Mult: $A_{2}=+0.5$ 2 and $R=1.20$ 12 (2014Au03). Mult: $A_{2}=+0.5$ 3 and $R=1.23$ (2014Au03)
581.6.4	$2.1^{\#}2$	3219.2	10/2	2637.6	$(25/2^+)$	(<u>L</u> 2) D			Mult: $A2 = -0.44.7$ (2015Au01).
593.8 ^{<i>a</i>} 2	77 3	1228.96	$17/2^{-}$	635.17	$\frac{13}{2^{-1}}$	2		25 4	$A2=+0.08\ 2\ (2015Au01).$
607.8 4	8.4 [#] 8	3245.4	(29/2 ⁺)	2637.6	(25/2+)	(E2)	0.02148 <i>30</i>		α (K)=0.01551 22; α (L)=0.00449 6; α (M)=0.001119 16 α (N)=0.000289 4; α (O)=5.98×10 ⁻⁵ 8; α (P)=7.37×10 ⁻⁶ 10 Mult.: A2=+0.35 8 (2015Au01).
618.8 ^C 6	7 <mark>ec</mark> 3	2232.1	$15/2^{+}$	1613.3	$11/2^{+}$	(E2)			Mult.: A2=+0.6 4 and R=1.1 4 (2014Au03).
635.1 ^{<i>a</i>} 2	100 3	635.17	13/2-	0.0	9/2-			42 6	A2=+0.09 4 (2015Au01).

6

					¹⁶⁵ Ho (⁴⁰ Ar,4n γ)	2014Au03,2	2015Au01	(continued)
						2	$\gamma(^{201}\text{At})$ (conti	nued)	
E_{γ}^{\dagger}	I_{γ}^{\dagger}	E _i (level)	\mathbf{J}_i^{π}	E_f	J_f^π	Mult. ^f	α^{g}	$I_{(\gamma+ce)}^{b}$	Comments
691.1 ^{<i>a</i>} 2		690.98	$11/2^{-}$	0.0	9/2-			11 2	
716.3 4	11.9 [#] 7	2637.6	(25/2 ⁺)	1921.30	21/2+	(E2)	0.01509 21		α (K)=0.01130 <i>16</i> ; α (L)=0.00286 <i>4</i> ; α (M)=0.000705 <i>10</i> α (N)=0.0001822 <i>26</i> ; α (O)=3.79×10 ⁻⁵ <i>5</i> ; α (P)=4.78×10 ⁻⁶ 7 Mult: $\Delta 2 = 0.46 d_{12} (2015 \Delta u_{01})$
745.5 ^{<i>a</i>} 2	74 2	1494.85	17/2+	749.36	13/2+	(E2)	0.01389 <i>19</i>	72 8	Mult.: A2=+0.+6 <i>φ</i> (2013A01). ce(K)/(γ+ce)=0.01033 14; ce(L)/(γ+ce)=0.00254 4; ce(M)/(γ+ce)=0.0001614 23; ce(O)/(γ+ce)=3.36×10 ⁻⁵ 5; ce(P)/(γ+ce)=4.26×10 ⁻⁶ 6 α (K)=0.01048 15; α (L)=0.00258 4; α (M)=0.000633 9 α (N)=0.0001637 23; α (O)=3.41×10 ⁻⁵ 5; α (P)=4.32×10 ⁻⁶ 6
749.3 ^{<i>a</i>} 2		749.36	13/2+	0.0	9/2-	[M2]	0.1204 <i>17</i>	105 12	Mult: A2=+0.4 2 (2015Au01). ce(K)/(γ +ce)=0.0847 <i>11</i> ; ce(L)/(γ +ce)=0.01727 24; ce(M)/(γ +ce)=0.00417 <i>6</i> ce(N)/(γ +ce)=0.001085 <i>15</i> ; ce(O)/(γ +ce)=0.0002317 <i>33</i> ; ce(P)/(γ +ce)=3.17×10 ⁻⁵ <i>4</i> α (K)=0.0949 <i>13</i> ; α (L)=0.01935 27; α (M)=0.00467 7 c(D)=0.001215 <i>17</i> ; c(O)=0.000260 <i>4</i> ; c(D)=3.55×10 ⁻⁵ 5
x771 0 1	$1.7^{@}$ 2								$a(1)=0.001215 17, a(0)=0.000200 4, a(1)=5.55\times10^{-5}$
870.5^{h}	1.7 2	<i>A</i> 111 <i>A</i>		3240.0	$(33/2^{+})$				A2 = +0.29 + (2013Au01).
876.1 ^{<i>a</i>} 2	0.95 - 8 19.4 6	4111.4 1625.34	17/2+	749.36	(35/2+) 13/2+	(E2)	0.01002 14	24 3	ce(K)/(γ +ce)=0.00767 <i>11</i> ; ce(L)/(γ +ce)=0.001703 24; ce(M)/(γ +ce)=0.000414 6 ce(N)/(γ +ce)=0.0001070 <i>15</i> ; ce(O)/(γ +ce)=2.242×10 ⁻⁵ <i>31</i> ; ce(P)/(γ +ce)=2.90×10 ⁻⁶ 4 α (K)=0.00775 <i>11</i> ; α (L)=0.001720 24; α (M)=0.000418 6 α (N)=0.0001081 <i>15</i> ; α (O)=2.264×10 ⁻⁵ <i>32</i> ; α (P)=2.93×10 ⁻⁶ 4 Mult.: A2=+0.16 <i>3</i> (2015Au01).
917.8 4	7.0 4	2147.2	$21/2^{-}$	1228.96	$17/2^{-}$	(E2)			Mult.: $A2=+0.37$ 6 (2015Au01).
921.1 4	10.1 [@] 6	3240.9	(33/2+)	2319.8	29/2+	(E2)	0.00908 13		$ \begin{array}{l} \alpha(\mathrm{K}) = 0.00706 \ 10; \ \alpha(\mathrm{L}) = 0.001525 \ 21; \ \alpha(\mathrm{M}) = 0.000370 \ 5 \\ \alpha(\mathrm{N}) = 9.56 \times 10^{-5} \ 13; \ \alpha(\mathrm{O}) = 2.005 \times 10^{-5} \ 28; \ \alpha(\mathrm{P}) = 2.61 \times 10^{-6} \\ 4 \end{array} $
io io -h									Mult.: A2=+0.20 <i>3</i> (2015Au01).
1049.9 ^{<i>n</i>} 4	2.2 2	3369.6	(22)(2-)	2319.8	29/2+	D			Mult.: $A2 = -0.7 \ 3 \ (2015Au01)$.
1068.9 ^{<i>n</i>} 4	4.5 3	2990.2	$(23/2^{-})$	1921.30	21/2+	D			A2 = -0.47 5 (2015 Au01).
1184.5 <i>4</i> 1379.9 ^{<i>h</i>} 5	$1.7 \stackrel{\circ}{=} 2$ $1.4 \stackrel{\circ}{=} 2$	3504.4 3699.7		2319.8 2319.8	29/2+ 29/2+	D,Q			Mult.: A2=+0.40 8 (2015Au01).

7

 $^{201}_{85}{\rm At}_{116}\text{--}7$

$\gamma(^{201}\text{At})$ (continued)

- [†] From 2015Au01 using the JUROGAM2 data, unless otherwise stated. I γ normalized to I γ (635 γ)=100.
- ^{\ddagger} Transition probably feeds the 2319-keV, 29/2⁺ level (2015Au01).
- [#] From summed spectra gated on 296 γ and 427 γ (2015Au01).
- [@] From 269 γ , 427 γ , 635 γ , 746 γ , or 749 γ delayed γ -ray tagged singles spectrum (2015Au01).
- [&] In addition to stretched dipole angular distributions, M1 character supported by high x-ray yield in coincidence with transition (2015Au01).
- ^{*a*} From 2015Au01 using the focal-plane Clover data.
- ^b From 2015Au01. The focal plane values deduced from the focal-plane Clover data, unless otherwise stated. Normalized to $I\gamma(269\gamma)=100$. Internal conversion coefficients that were used to calculate $I(\gamma+ce)$ were taken from 2008Ki07.
- ^c From 2014Au03. I γ above the $J^{\pi}=1/2^+$ isomer are from recoil-ce-tagged singles γ -ray data.
- ^d Doublet in 2014Au03. Intensities of the two components from 173-gated, recoil-corrected $\gamma\gamma$ -coin data.
- ^e Weak transition in 2014Au03, intensity from 173-keV gated, recoil-correlated $\gamma\gamma$ -coin data.
- ^{*f*} From $\gamma(\theta)$ in 2014Au03 and 2015Au01, unless otherwise stated. The reported in 2014Au03 correlation ratios, R, are defined as R=[$I\gamma(133.6^{\circ})+I\gamma(157.6^{\circ})$]/ $I\gamma(104.5^{\circ}$ or 75.5°). Expected values are 1.30 7 for $\Delta J=2$, quadrupole, and 0.70 6 for $\Delta J=1$, dipole transitions.
- ^{*g*} Additional information 1.
- ^h Placement of transition in the level scheme is uncertain.
- $x \gamma$ ray not placed in level scheme.

 $^{201}_{85}{\rm At}_{116}$

 $^{201}_{85}{\rm At}_{116}$

 $^{201}_{85}{\rm At}_{116}$

¹⁶⁵Ho(⁴⁰Ar,4nγ) 2014Au03,2015Au01

 $^{201}_{85}{\rm At}_{116}$