				History
		T	ype	Author Citation Literature Cutoff Date
		Full E	valuation	F. G. Kondev NDS 192,1 (2023) 1-Aug-2023
$Q(\beta^{-}) = -796 \ 12$	2; S(n)=	7059 29; S(p)=4	4790 6; Q	$\underline{u}(\alpha) = 1667.6$ 2021Wa16
				²⁰⁰ Tl Levels
				Cross Reference (XREF) Flags
				200 IO2 Z
				A 200 Tl IT decay D 198 Pt($^{\prime}$ Li,5n γ) B 200 Pb ε decay E 197 Au(207 Pb,X γ) C 198 Pt(6 Li,4n γ)
E(level) [†]	\mathbf{J}^{π}	T _{1/2}	XREF	Comments
0.0	2-	26.1 h <i>l</i>	ABCDE	%ε+%β ⁺ =100 μ=0.04 <i>I</i> (1976Ek03,2019StZV) J ^π : Atomic beam (1958Ma21); μ. T _{1/2} : From 1962Ja10; Others: 26.1 h <i>4</i> (1957He43) and 27 h <i>I</i> (1954Mi16). μ: Atomic beam magnetic resonance technique. Negative sign is favored by theory. Others: μ≤0.15 (1961Hu04,1961Hu08). configuration: Probable a mixture of $\pi(s_{1/2}^{-1}) \otimes \nu(p_{3/2}^{-1})$ and $\pi(s^{-1}) \otimes \nu(f^{-1})$
147.634 <i>21</i>	0-	7.10 ns 15	В	J^{π} : 147.63 γ E2 to 2 ⁻ ; log <i>ft</i> in ²⁰⁰ Pb ε decay favors J=0,1. T _{1/2} : From 1959Jo21; Others: 7.3 ns <i>3</i> (1960Ba05) and 8 ns 2 (1957As64). All values are from ²⁰⁰ Pb ε decay.
257.183 22	1-		В	J^{π} : 109.54 γ M1 to 0 ⁻ , 257.19 γ M1+E2 to 2 ⁻ .
289.24 5	(2)-		В	J^{π} : 289.24 γ M1 to 2 ⁻ ; log <i>ft</i> in ²⁰⁰ Pb <i>c</i> decay favors J=2.
280.02.3	1-		D	configuration: Probable dominant $\pi(s_{1/2}) \otimes \nu(p_{3/2})$.
323.70 17	$(3)^{-}$		A CD	J^{π} : 323.7 γ to 2 ⁻ ; 217.2 γ M1+E2 from 4 ⁻ ; the absence of feeding from the 5 ⁺
450.56 4	1-		В	J^{π} : 302.93 γ M1 to 0 ⁻ .
525.54 <i>3</i>	1^{-}		В	J^{π} : 235.62 γ M1 to 1 ⁻ ; 377.92 γ to 0 ⁻ ; log ft in ²⁰⁰ Pb ε decay favors J=1.
540.90 17	4^{-}		A CDE	J ^{π} : 540.9 γ E2 to 2 ⁻ ; absence of ε feeding in ²⁰⁰ Pb ε decay favors J>2.
				configuration: Probable $\pi(d_{3/2}^{-1}) \otimes \nu(f_{5/2}^{-1})$.
605.45 4	1- 7+	24.0 ms 10	B	J^{n} : 605.44 γ M1 to 2 ⁻ ; 457.80 γ to 0 ⁻ .
/33.02 24	1.	54.0 ms 10	A CDE	7011 =100 J [#] : 212.7 γ E3 to 4 ⁻ . T _{1/2} : Weighted average of 34.1 ms <i>10</i> (1963De38), 33 ms <i>2</i> (1967Co20) and 37 ms <i>4</i> (1963Di10).
761.98 24	5+	397 ns <i>17</i>	CDE	configuration: Probably a mixture of $\pi(s_{1/2}) \otimes \nu(t_{1/2})$ and $\pi(d_{3/2}^{-1}) \otimes \nu(t_{1/2}^{-1})$. $J^{\pi}: 221.1\gamma$ El to 4 ⁻ . $T_{1/2}$: From 220.0 γ -541.0 $\gamma(\Delta t)$ and 262.0 γ -541.0 $\gamma(\Delta t)$ in 2019Ro12. Other: 0.33 μ s 5 in 1972Is01.
886.1 <i>3</i> 1023.6 <i>3</i> 1173.8 <i>3</i> 1244.0 <i>3</i>	(6) ⁺ 6 ⁺ (8 ⁺) 7 ⁻	7.0 ns 5	CDE CDE CD CDE	$ \begin{array}{l} J^{\pi}: 132.4\gamma \text{ M1 to } 7^+; 357.9\gamma \text{ E1 from } 7^-; \\ J^{\pi}: 261.6\gamma \text{ M1}(+\text{E2}) \text{ to } 5^+; 220.4\gamma \text{ E1 from } 7^ \\ J^{\pi}: 287.7\gamma \text{ (E2)}, 420.3\gamma \text{ M1}+\text{E2 to } 7^+. \\ J^{\pi}: 490.4\gamma \text{ E1 to } 7^+; 357.9\gamma \text{ E1 to } (6)^+. \\ T_{1/2}: \text{ Weighted average of } 6.9 \text{ ns } 5 \text{ (}311\gamma\text{-}490\gamma(\Delta t)\text{) and } 7.1 \text{ ns } 5 \\ \text{ (}230\gamma\text{-}490\gamma(\Delta t)\text{) and centroid-shift analysis in } ^{197}\text{Au}(^{207}\text{Pb},x\gamma) \text{ (}2019\text{Ro12}\text{)}; \\ \text{Other: } 4.8 \text{ ns } 2 \text{ from } \gamma\gamma(\text{t) in } ^{198}\text{Pt}(^6\text{Li},4n\gamma) \text{ (}1981\text{KrO3}\text{)}. \end{array} $

Continued on next page (footnotes at end of table)

²⁰⁰Tl Levels (continued)

E(level) [†]	\mathbf{J}^{π}	XREF	Comments
			configuration: $\pi(h_{0/2}^{-1}) \otimes \nu(i_{13/2}^{-1})$.
1247.5 [‡] 3	(8 ⁻)	CDE	J^{π} : 493.8 γ to 7 ⁺ ; systematics of similar structures in neighboring nuclei.
1323.0 [‡] <i>3</i> 1349.5 <i>3</i>	(9^{-}) (7^{+})	CDE CDE	J^{π} : 75.5 γ M1 to (8 ⁻); The apparent $\Delta J=1$ band structure in ¹⁹⁸ Pt(⁶ Li,4n) (1981Kr03). J^{π} : 175.6 γ to (8 ⁺), 326.0 γ to 6 ⁺ .
1442.2 [‡] 3	(10^{-})	CDE	J^{π} : 119.2 γ M1(+E2) to (9 ⁻), 194.7 γ to (8 ⁻); band structure.
1659.4 [‡] 3	(11^{-})	CDE	I^{π} : 217.2 γ M1(+E2) to (10 ⁻). 336.3 γ E2 to (9 ⁻): hand structure.
1716.9 3	(10^+)	D	J^{π} : 543.1 γ (E2) to (8 ⁺) c.
1733.5 <i>3</i>		DE	
1876.0 4	(10^{+})	D	J^{π} : 702.2 γ (E2) to (8 ⁺).
1889.2 [‡] 3	(12 ⁻)	CDE	J^{π} : 229.8 γ M1(+E2) to (11 ⁻); 447.0 γ E2 to (10 ⁻); band structure.
1892.6 3	(11^+)	D	J^{π} : 175.7 γ (M1+E2) to (10 ⁺).
20/1.83	(12)	CD	$J^*: 412.4\gamma$ MI to (11), $1/9.2\gamma$ D to (11).
2237.5+ 3 2438.0 5	(13^{-}) (12^{+})	CDE D	J^{π} : 348.3 γ M1+E2 to (12 ⁻), 5/8.3 γ E2 to (11 ⁻); band structure. J^{π} : 562.0 γ (E2) to (10 ⁺).
2548.2 [‡] 3	(14 ⁻)	CDE	J^{π} : 659.0 γ E2 to (12 ⁻), 310.7 γ M1(+E2) to (13 ⁻); apparent $\Delta J=1$ band structure.
2630.4 4	(12^{-})	D	J^{π} : 971.0 γ (M1) to (11 ⁻).
2634.0 5 2813 8 4		ע ח	
2845.6 3	(14^{-})	D	J^{π} : 773.8 γ (E2) to (12 ⁻).
2886.5 4	(14 ⁺)	D	J^{π} : 997.3 γ (M2) to (12 ⁻).
2922.2 3	(15 ⁻)	DE	J^{π} : 373.9 γ M1+E2 to (14 ⁻).
3026.3 [‡] 3	(15 ⁻)	DE	J^{π} : 478.0 γ M1+E2 to (14 ⁻).
3114.1 5	(1 = +)	D	
3220.5 4	(15') (12^+)	DE	$J^{*}: 982.9\gamma \text{ M2 to } (13)$.
3282.3.3	(15^{-})	DE	J . 1508.17 ET to (12). I^{π} : 256 0v M1 to (15 ⁻) 734 4v E2 to (14 ⁻)
$3313.6^{\#}.4$	(10^{+})	DE	I^{π} : 1076 2 γ E1 to (13 ⁻), 93 1 γ to (15 ⁺)
3338.0 [‡] 3	(16^{-})	DE	I^{π} : 415.8v M1 to (15 ⁻), 789.7v E2 to (14 ⁻); hand assignment.
$3591.6^{\#}.4$	(15^+)	DF	I^{π} : 278 (by M1+F2 to (14 ⁺); hand assignment
3608.7 4	(15^{-})	DE	J^{π} : 326.4 γ M1+E2 to (16 ⁻), 686.4 γ M1+E2 to (15 ⁻).
3665.0 [‡] 4	(17^{-})	DE	J^{π} : 327.0 γ to (16 ⁻); band assignment.
3771.4 [#] 4	(16^{+})	DE	J^{π} : 179.8 γ M1+E2 to (15 ⁺), 457.3 γ to (14 ⁺); band assignment.
3799.7 4	(17 ⁻)	DE	J^{π} : 517.4 γ M1+E2 to (16 ⁻), 773.4 γ (E2) to (15 ⁻).
3857.1 [‡] 4	(18 ⁻)	DE	J^{π} : 519.1 γ E2 to (16 ⁻), 192.0 γ to (17 ⁻); band assignment.
3928.7 [#] 4	(17 ⁺)	DE	J^{π} : 157.3 γ M1 to (16 ⁺), 337.0 γ to (15 ⁺); band assignment.
4033.0 [#] 4	(18 ⁺)	DE	J^{π} : 104.4 γ M1+E2 to (17 ⁺), 261.7 γ (E2) to (16 ⁺); band assignment.
4048.8 4	(19^+)	DE	J^{π} : 191.5 γ E1 to (18 ⁻).
4165.1.5	(20^{+})	E D	J^{*} : 116.3 γ M1 to (19 ⁺). I^{π} : 271.2 γ D to (10 ⁺)
4374 5 [#] 4	(20)		$J = 2/1.2 \gamma D = 0 (19^{-1})$; $I = 3/1.5 \gamma M_1$ to (18^+) ; band assignment
4436.6.5	(19^{-}) (21^{+})	E	J^{π} : 271.5 γ to (20 ⁺).
4652.5 [#] 4	(20^+)	DE	I^{π} : 278.0v to (19 ⁺), 619.5v (E2) to (18 ⁺); hand assignment.
4755.9 5	(21^+)	D	J^{π} : 435.8 γ to (20); 707.2 γ E2 to (19 ⁺).
4827.6 5	(21 ⁺)	D	J^{π} : 778.8 γ (E2) to (19 ⁺).
4872.5 4	(21^{+})	E	J^{n} : 220.2 γ M1 to (20 ⁺), 823.6 γ to (19 ⁺).
4898.7# 4	(21^+)	D	J^{π} : 246.2 γ (M1+E2) to (20 ⁺); band assignment.
4945.5 3 5074 4 5	(22^+)	E F	J^{-1} : $1/8.4\gamma$ to (20°). I^{π} : 909.2 γ (F2) to (20 ⁺)
5154.5 5	(22.23)	E	J^{π} : 211.0v to (22 ⁺).
5157.8 5	(22 ⁻)	Ē	J^{π} : 285.3 γ E1 to (21 ⁺).
5184.2 [#] 4	(22 ⁺)	D	J^{π} : 285.5 γ (M1+E2) to (21 ⁺); band assignment.

Continued on next page (footnotes at end of table)

²⁰⁰Tl Levels (continued)

E(level) [†]	J^{π}	T _{1/2}	XREF	Comments
5270.2 5	(22,23)		E	J^{π} : 195.8 γ to (22 ⁺).
5723.1 5	(23^{+})		E	J^{π} : 850.6 γ to (21 ⁺), 452.9 γ to (22,23).
5907.0 5	(24^{-})		E	J^{π} : 183.8 γ to (23 ⁺), 749.3 γ to (22 ⁻).
6006.3 7	(26^{-})	57 ns 2	E	J^{π} : 99.2 γ E2 to (24 ⁻).
				$T_{1/2}$: From $\gamma_1 - \gamma_2(t)$ (2019Ro12) using $\gamma_1 = 285.3$ - and 749.3-keV, and $\gamma_2 = 217.1$ -,
				229.8-, 310.8-, 311.1-, 348.2-, and 490.2-keV transitions.
				configuration: $\pi(h_{11/2}^{-1}) \otimes \nu(i_{13/2}^{-3}, f_{5/2}^{-1}, p_{3/2}^{-1})$. The assignment is tentative.

[†] From a least-squares fit to E γ . [‡] Band(A): Band based on (8⁻) state at 1247.5 keV. Probable configuration= $\pi(h_{9/2}^{-1})\otimes v(i_{13/2}^{-1})$. [#] Band(B): Band based on (14⁺) state at 3313.6 keV. Configuration= $\pi(h_{9/2}^{-1})\otimes v(i_{13/2}^{-2},(f_{5/2}/p_{3/2})^{-1})$.

						Adopted	l Levels, G	ammas (cont	tinued)
							γ ²⁰	⁰⁰ Tl)	
E _i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\dagger}	\mathbf{E}_{f}	\mathbf{J}_f^{π}	Mult.&	δ	α^{c}	Comments
147.634	0-	147.63 [‡] 3	100‡	0.0	2-	E2 [‡]		1.232 17	$\begin{aligned} &\alpha(\text{K})=0.333\ 5;\ \alpha(\text{L})=0.671\ 9;\ \alpha(\text{M})=0.1757\ 25\\ &\alpha(\text{N})=0.0440\ 6;\ \alpha(\text{O})=0.00762\ 11;\ \alpha(\text{P})=0.000274\ 4\\ &\text{B(E2)(W.u.)}=7.33\ 17\\ &\text{Mult.:}\ \alpha(\text{K})\text{exp}=0.30\ 3,\ \alpha(\text{L}12)\text{exp}=0.41\ 4,\ \alpha(\text{L}3)\text{exp}=0.27\ 4,\\ &(\alpha(\text{M}2)\text{exp}+\alpha(\text{M}3)\text{exp})=0.19\ 4;\ \text{L}12/\text{L}3=1.58\ 7\ (1957\text{As}64);\\ &\text{K/L(exp)}=0.44\ 4,\ \text{L}12/\text{L}3(exp)=1.5\ 2\ \text{and}\ \text{L/M(exp)}=3.6\ 6\\ &(1963\text{Wi04}). \end{aligned}$
257.183	1-	109.54 [‡] 4	10.8 [‡] <i>15</i>	147.634	0-	M1 [‡]		6.62 9	$\begin{array}{l} \alpha({\rm K}){=}5.41\ 8;\ \alpha({\rm L}){=}0.930\ 13;\ \alpha({\rm M}){=}0.2174\ 31\\ \alpha({\rm N}){=}0.0549\ 8;\ \alpha({\rm O}){=}0.01066\ 15;\ \alpha({\rm P}){=}0.001006\ 14\\ {\rm Mult.:}\ \alpha({\rm K}){\rm exp}{=}5.7\ 10,\ \alpha({\rm L}){\rm exp}{=}1.09\ 24,\ \alpha({\rm L}){\rm exp}{=}0.109\ 24,\\ \alpha({\rm M}){\rm exp}{=}0.23\ 9;\ {\rm K}/{\rm L}1/{\rm L}2/{\rm M1}({\rm exp}){=}22\ 2/4.2\ 7/0.42\ 7/0.9\ 3\\ {\rm and}\ {\rm K}/{\rm L}({\rm exp}){=}4.7\ 8\ (1963{\rm Wi04}). \end{array}$
		257.19 [‡] 3	100 [‡] 3	0.0	2-	M1+E2 [‡]	1.22 12	0.347 22	
289.24	(2)-	289.24 [‡] 15	100 [‡]	0.0	2-	M1 [‡]		0.433 6	$\alpha(K)=0.355\ 5;\ \alpha(L)=0.0600\ 8;\ \alpha(M)=0.01400\ 20$ $\alpha(N)=0.00353\ 5;\ \alpha(O)=0.000687\ 10;\ \alpha(P)=6.49\times10^{-5}\ 9$ Mult.: $\alpha(K)\exp=0.44\ 15$.
289.92	1-	32.74 [‡] 3	0.87 [‡] 14	257.183	1-	M1 [‡]		41.6 6	$\begin{aligned} &\alpha(L)=31.8 \ 5; \ \alpha(M)=7.45 \ 11 \\ &\alpha(N)=1.881 \ 27; \ \alpha(O)=0.365 \ 5; \ \alpha(P)=0.0345 \ 5 \\ &\text{Mult.:} \ \alpha(L2)\exp=3.0 \ 7, \ \alpha(M1)\exp=8.2 \ 22, \ \alpha(M2)\exp=1.6 \ 7, \\ &\alpha(M3)\exp=1.4 \ 9; \ L1/L2/M1/M2/M3(\exp)= \ 6.3 \ 10/0.66 \ 10/1.8 \\ &4/0.35 \ 4/0.3 \ 2 \ (1963Wi04). \end{aligned}$
		142.28 [‡] 3	100 [‡] 5	147.634	0-	M1 [‡]		3.14 4	$\alpha(K)=2.57 \ 4; \ \alpha(L)=0.439 \ 6; \ \alpha(M)=0.1026 \ 14$ $\alpha(N)=0.0259 \ 4; \ \alpha(O)=0.00503 \ 7; \ \alpha(P)=0.000475 \ 7$ Mult.: $\alpha(K)\exp=2.74 \ 22, \ \alpha(L12)\exp=0.56 \ 7, \ \alpha(M1)\exp=0.135 \ 25, \ \alpha(N1)\exp=0.044 \ 12; \ K/L(exp)=4.8 \ 6 \ and \ K/L12/M1/N1(exp)=69 \ 4/14.2 \ 15/3.4 \ 6/1.1 \ 3 \ (1963Wi04).$
		289.92 [‡] 10	55 [‡] 11	0.0	2-	M1 [‡]		0.431 6	$\alpha(K)=0.353\ 5;\ \alpha(L)=0.0596\ 8;\ \alpha(M)=0.01391\ 20$ $\alpha(N)=0.00351\ 5;\ \alpha(O)=0.000682\ 10;\ \alpha(P)=6.45\times10^{-5}\ 9$ Mult.: $\alpha(K)\exp=0.39\ 9.$
323.70	(3)-	323.7 2	100	0.0	2^{-}				
450.56	1-	161.32 [‡] 4	9.1 [‡] 10	289.24	(2)-	M1 [‡]		2.201 <i>31</i>	α (K)=1.800 25; α (L)=0.307 4; α (M)=0.0718 10 α (N)=0.01812 25; α (O)=0.00352 5; α (P)=0.000333 5 Mult.: α (K)exp=1.9 3.
		193.39 [‡] <i>10</i>	1.0 [‡] 4	257.183	1-	[M1] [‡]		1.322 19	α (K)=1.081 <i>I</i> 5; α (L)=0.1840 <i>26</i> ; α (M)=0.0430 <i>6</i> α (N)=0.01085 <i>I</i> 5; α (O)=0.002108 <i>30</i> ; α (P)=0.0001992 <i>28</i>

From ENSDF

 $^{200}_{81}\mathrm{Tl}_{119}$ -4

 $^{200}_{81}\mathrm{Tl}_{119}$ -4

L

						Adopted	Levels, Gamr	nas (continued)
							γ ⁽²⁰⁰ Tl) (cont	inued)
E_i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\dagger}	E_f	\mathbf{J}_{f}^{π}	Mult. ^{&}	α ^c	Comments
450.56	1-	302.93 [‡] 5	5.0 [‡] 10	147.634	0-	(M1) [‡]	0.382 5	$ \begin{array}{l} \alpha(\mathrm{K}) = 0.313 \; 4; \; \alpha(\mathrm{L}) = 0.0528 \; 7; \; \alpha(\mathrm{M}) = 0.01232 \; 17 \\ \alpha(\mathrm{N}) = 0.00311 \; 4; \; \alpha(\mathrm{O}) = 0.000604 \; 8; \; \alpha(\mathrm{P}) = 5.72 \times 10^{-5} \; 8 \\ \mathrm{Mult.:} \; \; \alpha(\mathrm{K}) \mathrm{exp} = 0.53 \; 13, \; \alpha(\mathrm{L}12) \mathrm{exp} = 0.09 \; 3; \; \mathrm{K/L(exp)} = 5.8 \; 13, \\ \mathrm{K/L12(exp)} = 0.70 \; 10/0.12 \; 3 \; (1963 \mathrm{Wio4}). \end{array} $
		450.56 [‡] 5	100 [‡]	0.0	2-	M1 [‡]	0.1311 <i>18</i>	$ \begin{array}{l} \alpha(\mathrm{K}) = 0.1077 \ 15; \ \alpha(\mathrm{L}) = 0.01798 \ 25; \ \alpha(\mathrm{M}) = 0.00419 \ 6 \\ \alpha(\mathrm{N}) = 0.001058 \ 15; \ \alpha(\mathrm{O}) = 0.0002055 \ 29; \ \alpha(\mathrm{P}) = 1.948 \times 10^{-5} \ 27 \\ \mathrm{Mult.:} \ \alpha(\mathrm{K}) \mathrm{exp} = 0.166 \ 19, \ \alpha(\mathrm{L12}) \mathrm{exp} = 0.029 \ 3, \ \alpha(\mathrm{M}) \mathrm{exp} = 0.0060 \ 8; \\ \mathrm{K/L}(\mathrm{exp}) = 5.8 \ 9, \ \mathrm{L/M}(\mathrm{exp}) = 4.7 \ 8, \ \mathrm{K/L12/M}(\mathrm{exp}) = 4.4 \ 5/0.76 \ 8/0.16 \ 2 \\ (1963 \mathrm{Wi04}). \end{array} $
525.54	1-	235.62 [‡] 4	100 [‡] 3	289.92	1-	M1 [‡]	0.762 11	α (K)=0.624 9; α (L)=0.1058 15; α (M)=0.02471 35 α (N)=0.00624 9; α (O)=0.001212 17; α (P)=0.0001146 16
		268.36 [‡] 3	92 [‡] 4	257.183	1-	M1 [‡]	0.532 7	α (K)=0.436 6; α (L)=0.0738 10; α (M)=0.01721 24 α (N)=0.00435 6; α (O)=0.000844 12; α (P)=7.98×10 ⁻⁵ 11
		377.92 [‡] 5	0.62 [‡] 23	147.634	0-	[M1] [‡]	0.2098 29	α (K)=0.1721 24; α (L)=0.0289 4; α (M)=0.00674 9 α (N)=0.001700 24; α (O)=0.000330 5; α (P)=3.13×10 ⁻⁵ 4
		525.54 [‡] 6	9.8 [‡] 8	0.0	2-	[M1] [‡]	0.0872 12	$\alpha(K)=0.0717 \ 10; \ \alpha(L)=0.01192 \ 17; \ \alpha(M)=0.00278 \ 4 \\ \alpha(N)=0.000701 \ 10; \ \alpha(\Omega)=0.0001362 \ 19; \ \alpha(P)=1.291\times10^{-5} \ 18$
540.90	4-	217.2 2 540.9 2	7.6 <i>11</i> 100 <i>15</i>	323.70 0.0	(3) ⁻ 2 ⁻	(M1) E2	0.02333 <i>33</i>	Mult.: $A_2 = -0.235$ and $A_4 = -0.1210$ in ¹⁹⁸ Pt(⁶ Li,4ny) (1981Kr03). $\alpha(K) = 0.0170324$; $\alpha(L) = 0.004777$; $\alpha(M) = 0.00117316$ $\alpha(N) = 0.0002954$; $\alpha(O) = 5.44 \times 10^{-5}8$; $\alpha(P) = 3.81 \times 10^{-6}5$ Mult.: K/L=3.54 in ²⁰⁰ T1 IT decay (1963Di10).
605.45	1-	155.29 ^{‡d} 10	8 [‡] 3	450.56	1-	[M1] [‡]	2.452 35	$\alpha(K)=2.005\ 28;\ \alpha(L)=0.342\ 5;\ \alpha(M)=0.0800\ 11$ $\alpha(N)=0.02020\ 29;\ \alpha(O)=0.00392\ 6;\ \alpha(P)=0.000371\ 5$
		315.60 [‡] 8	$40^{\ddagger} 6$	289.92	1-	(M1) [‡]	0.342 5	α (K)=0.280 4; α (L)=0.0472 7; α (M)=0.01101 15 α (N)=0.00278 4; α (O)=0.000540 8; α (P)=5.11×10 ⁻⁵ 7
		348.23 [‡] 8	28 [‡] 9	257.183	1-	[M1,E2] [‡]	0.17 9	α (K)=0.13 8; α (L)=0.028 8; α (M)=0.0068 16 α (N)=0.0017 4; α (O)=3.2×10 ⁻⁴ 9; α (P)=2.6×10 ⁻⁵ 13
		457.80 [‡] 7	21 [‡] 4	147.634	0-	[M1] [‡]	0.1257 18	$\alpha(K)=0.1032 \ 14; \ \alpha(L)=0.01723 \ 24; \ \alpha(M)=0.00401 \ 6 \ \alpha(N)=0.001013 \ 14; \ \alpha(O)=0.0001969 \ 28; \ \alpha(P)=1.866 \times 10^{-5} \ 26$
		605.44 [‡] 6	100 [‡] 7	0.0	2-	M1 [‡]	0.0602 8	$\alpha(\mathbf{K})=0.0495$ 7; $\alpha(\mathbf{L})=0.00819$ 11; $\alpha(\mathbf{M})=0.001907$ 27 (A) $\alpha(\mathbf{M})=0.001907$ 27
753.62	7+	212.7 2	100	540.90	4-	E3	2.77 4	$\alpha(N)=0.0004817; \alpha(O)=9.56\times10^{-7}13; \alpha(P)=8.88\times10^{-7}12$ $\alpha(K)=0.3906; \alpha(L)=1.76026; \alpha(M)=0.4797$ $\alpha(N)=0.120918; \alpha(O)=0.0210331; \alpha(P)=0.00085113$ B(E3)(W.u.)=0.2026
761.98	5+	221.1 2	100	540.90	4-	E1	0.0594 8	Mult.: K/L=0.25 5 in ²⁰⁰ T1 fT decay (1963Di10). α (K)=0.0485 7; α (L)=0.00837 12; α (M)=0.001953 28 α (N)=0.000488 7; α (O)=9.15×10 ⁻⁵ 13; α (P)=7.19×10 ⁻⁶ 10 B(E1)(W.u.)=4.35×10 ⁻⁸ 19

 $^{200}_{81}\mathrm{Tl}_{119}\text{-}5$

From ENSDF

 $^{200}_{81}\mathrm{Tl}_{119}$ -5

L

							γ ⁽²⁰⁰ Tl) (c	ontinued)
E _i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\dagger}	E_f	${ m J}_f^\pi$	Mult. ^{&}	α ^C	Comments
886.1	(6)+	132.4 2	100	753.62	7+	M1	3.86 6	Mult.: From α =0.06 2 from intensity balance considerations in ¹⁹⁸ Pt(⁶ Li,4n γ) (1981Kr03). α (K)=3.15 5; α (L)=0.540 8; α (M)=0.1261 18 α (N)=0.0318 5; α (O)=0.00618 9; α (P)=0.000584 9
1023.6	6+	261.6 2	100	761.98	5+	M1(+E2)	0.37 20	Mult.: From intensity balance considerations in ¹⁹⁸ Pt(⁶ Li,4n γ) (1981Kr03). α (K)=0.28 <i>19</i> ; α (L)=0.069 <i>10</i> ; α (M)=0.0169 <i>16</i> α (N)=0.0043 <i>4</i> ; α (O)=0.00079 <i>11</i> ; α (P)=5.9×10 ⁻⁵ 27
1173.8	(8+)	287.7 2	43 6	886.1	(6)+	(E2)	0.1257 18	Mult.: A ₂ =-0.26 3 and A ₄ =-0.03 6 in ¹⁹⁸ Pt(⁶ Li,4n γ) (1981Kr03). α (K)=0.0708 10; α (L)=0.0412 6; α (M)=0.01055 15 α (N)=0.00265 4; α (O)=0.000470 7; α (P)=2.376×10 ⁻⁵ 34
		420.3 2	100 15	753.62	7+	M1+E2	0.10 6	Mult.: $A_2=0.37 4$; $A_4=-0.14 6$ in ¹⁹⁸ Pt(⁶ Li,4n γ) (1981Kr03); DCO(D+Q)=1.33 5 and POL=+0.13 7 in ¹⁹⁸ Pt(⁷ Li,5n γ) (2017Bh02). α (K)=0.08 5; α (L)=0.016 6; α (M)=0.0038 12 α (N)=9.7 \times 10 ⁻⁴ 31; α (O)=1.8 \times 10 ⁻⁴ 6; α (P)=1.5 \times 10 ⁻⁵ 8
1244.0	7-	220.4 2	9.1 8	1023.6	6+	[E1]	0.0599 8	Mult.: $A_2 = -0.62$ 9 and $A_4 = -0.13$ 9 in ¹⁰⁰ Pt(⁶ L1,4n γ) (1981Kr03); $A_2 = -0.66$ 10, $A_4 = +0.06$ 16 and POL= $+0.02$ 3 in ¹⁹⁸ Pt(⁷ L1,5n γ) (2017Bh02). $\alpha(K)=0.0489$ 7; $\alpha(L)=0.00844$ 12; $\alpha(M)=0.001969$ 28 $\alpha(N)=0.000492$ 7; $\alpha(O)=9.23\times10^{-5}$ 13; $\alpha(P)=7.24\times10^{-6}$ 10 B(E1)(W,u)= 1.64×10^{-7} 17
		357.9 2	34.7 17	886.1	(6)+	E1	0.01910 27	$I_{\gamma}: \text{From } {}^{197}\text{Au}({}^{207}\text{Pb},x\gamma).$ $\alpha(\text{K})=0.01574\ 22;\ \alpha(\text{L})=0.00258\ 4;\ \alpha(\text{M})=0.000600\ 8$ $\alpha(\text{N})=0.0001503\ 21;\ \alpha(\text{O})=2.85\times10^{-5}\ 4;\ \alpha(\text{P})=2.391\times10^{-6}\ 34$ $B(\text{E1})(\text{W.u.})=1.46\times10^{-7}\ 11$ $I_{\gamma}: \text{From } {}^{197}\text{Au}({}^{207}\text{Pb},x\gamma).$
		490.4 2	100 3	753.62	7+	(E1)	0.00961 <i>13</i>	Mult.: From intensity balance considerations in ¹⁹⁸ Pt(⁶ Li,4nγ) (1981Kr03). α (K)=0.00796 <i>11</i> ; α (L)=0.001268 <i>18</i> ; α (M)=0.000294 <i>4</i> α (N)=7.37×10 ⁻⁵ <i>10</i> ; α (O)=1.408×10 ⁻⁵ <i>20</i> ; α (P)=1.220×10 ⁻⁶ <i>17</i> B(E1)(W.u.)=1.64×10 ⁻⁷ <i>10</i> I _γ : From ¹⁹⁷ Au(²⁰⁷ Pb,xγ). Mult.: A ₂ =0.35 <i>1</i> and A ₄ =-0.02 2 consistent with J to J stretched dipole transition; pure E1 is suggested from unpublished ce studies reported in ¹⁹⁸ Pt(⁶ Li,4nγ) (1981Kr03).
1247.5	(8 ⁻)	(3.5 ^b 4) 493.8 2	0.7 <i>3</i> 100 <i>33</i>	1244.0 753.62	7- 7+			
1323.0	(9 ⁻)	75.5 2	100	1247.5	(8-)	(M1)	3.57 6	α (L)=2.73 4; α (M)=0.639 10 α (N)=0.1615 26; α (O)=0.0313 5; α (P)=0.00296 5
1349.5	(7+)	175.6 2 326.0 2		1173.8 1023.6	(8 ⁺) 6 ⁺			E_{γ} : From ¹⁹⁸ Pt(⁷ Li,5n γ) (2017Bh02).
1442.2	(10 ⁻)	119.2 [@] 2	100 [@] 5	1323.0	(9 ⁻)	M1(+E2)	4.0 12	$\alpha(K)=2.4$ 19; $\alpha(L)=1.2$ 5; $\alpha(M)=0.32$ 15

					Adopted	Levels, Gamm	nas (continued)
						γ ⁽²⁰⁰ Tl) (conti	nued)
E _i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\dagger}	$\mathbf{E}_f = \mathbf{J}_f^{\pi}$	Mult.&	α^{c}	Comments
							$\begin{aligned} &\alpha(\text{N})=0.08\ 4;\ \alpha(\text{O})=0.014\ 6;\ \alpha(\text{P})=0.00073\ 6\\ &\text{Mult.:}\ \text{A}_2=-0.16\ 3\ \text{and}\ \text{A}_4=0.03\ 5\ \text{in}\ {}^{198}\text{Pt}({}^6\text{Li},4n\gamma)\ (1981\text{Kr03});\\ &\text{DCO}(\text{D})=1.11\ 3\ \text{in}\ {}^{198}\text{Pt}({}^7\text{Li},5n\gamma)\ (2017\text{Bh02}). \end{aligned}$
1442.2	(10 ⁻)	194.7 [@] 1	10.6 [@] 17	1247.5 (8 ⁻)			$\alpha(K)=2.4$ 19; $\alpha(L)=1.2$ 6; $\alpha(M)=0.32$ 15; $\alpha(N+)=0.09$ 5 $\alpha(N)=0.08$ 4; $\alpha(O)=0.014$ 6; $\alpha(P)=0.00073$ 7
1659.4	(11 ⁻)	217.2 [@] 2	100 [@] 5	1442.2 (10 ⁻)	M1(+E2)	0.63 32	$\alpha(K)=0.46\ 32;\ \alpha(L)=0.1299\ 35;\ \alpha(M)=0.0319\ 10$ $\alpha(N)=0.00803\ 23;\ \alpha(O)=0.00148\ 4;\ \alpha(P)=1.0\times10^{-4}\ 4$ Mult.: DCO(O)=0.42 3, POL=-0.06 3 in ¹⁹⁸ Pt(⁷ Li,5n\gamma) (2017Bh02).
		336.3 [@] 3	3.8 [@] 5	1323.0 (9 ⁻)	E2	0.0795 11	$\alpha(K)=0.0489\ 7;\ \alpha(L)=0.02301\ 33;\ \alpha(M)=0.00583\ 8$ $\alpha(N)=0.001464\ 21;\ \alpha(O)=0.000262\ 4;\ \alpha(P)=1.447\times10^{-5}\ 21$ Mult : DCO(O)=0.89 13 in ¹⁹⁸ Pt ⁽⁷ L i 5nx) (2017Bh02)
1716.9	(10 ⁺)	543.1 <i>I</i>	100	1173.8 (8 ⁺)	(E2)	0.02311 32	$\alpha(K)=0.01688\ 24;\ \alpha(L)=0.00472\ 7;\ \alpha(M)=0.001159\ 16$ $\alpha(N)=0.000291\ 4;\ \alpha(O)=5.38\times10^{-5}\ 8;\ \alpha(P)=3.77\times10^{-6}\ 5$ Mult : DCO(D+O)=1\ 29\ 9 POL =+0\ 06\ 4 \text{ in } {}^{198}\text{Pt}({}^7\text{Li}\text{ 5ny})\ (2017\text{Bh02})
1733.5		384.0 [@] 1	100 [@]	1349.5 (7+)			Mut D C C (D + Q) = 1.25 3, 10 D = 10.00 7 m = 11(D, 517) (2017 D 102).
1876.0	(10+)	702.2 [@] 2	15.24 [@] 78	1173.8 (8+)	(E2)	0.01303 18	α (K)=0.01001 <i>14</i> ; α (L)=0.002298 <i>32</i> ; α (M)=0.000555 <i>8</i> α (N)=0.0001397 <i>20</i> ; α (O)=2.62×10 ⁻⁵ <i>4</i> ; α (P)=2.022×10 ⁻⁶ <i>28</i> Mult.: DCO(D+O)=0.92 <i>11</i> , POL=+0.11 <i>5</i> in ¹⁹⁸ Pt(⁷ Li,5n γ) (2017Bh02).
1889.2	(12 ⁻)	229.8 [@] 1	100 [@] 4	1659.4 (11 ⁻)	M1(+E2)	0.54 28	$\alpha(K)=0.40\ 27;\ \alpha(L)=0.107\ 7;\ \alpha(M)=0.0262\ 4$ $\alpha(N)=0.00660\ 13;\ \alpha(O)=0.00122\ 8;\ \alpha(P)=9.E-5\ 4$ Mult.: A ₂ =-0.21 4 and A ₄ =0.08 7 in ¹⁹⁸ Pt(⁶ Li,4n\gamma) (1981Kr03); DCO(O)=0.46 L POL=-0.04 2 in ¹⁹⁸ Pt(⁷ Li,5n\gamma) (2017Bh02).
		447.0 [@] 2	20.6 [@] 10	1442.2 (10 ⁻)	E2	0.0371 5	$\alpha(K)=0.0256 \ 4; \ \alpha(L)=0.00864 \ 12; \ \alpha(M)=0.002150 \ 30 \ \alpha(N)=0.000540 \ 8; \ \alpha(O)=9.85\times10^{-5} \ 14; \ \alpha(P)=6.31\times10^{-6} \ 9 \ Mult.; \ DCO(O)=1.07 \ 8; \ POL=+0.05 \ 4 \ in \ ^{198}Pt(^7Li,5n\gamma) \ (2017Bh02).$
1892.6	(11^{+})	(16.6 ^b 5)		1876.0 (10+)			
		175.7 [@] 1	100 [@]	1716.9 (10 ⁺)	(M1+E2)	1.2 5	α (K)=0.8 6; α (L)=0.28 4; α (M)=0.069 13 α (N)=0.0173 31; α (O)=0.0032 4; α (P)=2.0×10 ⁻⁴ 6 Mult.: DCO(D+Q)=0.75 12 in ¹⁹⁸ Pt(⁷ Li,5n γ) (2017Bh02).
2071.8	(12 ⁻)	179.2 [@] 1	100 [@] 4	1892.6 (11+)	D		Mult.: DCO(D+Q)=0.82 8 in 198 Pt(7 Li,5n γ) (2017Bh02).
		412.4 [@] 1	85 [@] 5	1659.4 (11 ⁻)	M1	0.1660 23	α (K)=0.1362 <i>19</i> ; α (L)=0.02281 <i>32</i> ; α (M)=0.00532 <i>7</i> α (N)=0.001342 <i>19</i> ; α (O)=0.000261 <i>4</i> ; α (P)=2.471×10 ⁻⁵ <i>35</i> Mult.: DCO(D)=0.84 <i>20</i> , POL=-0.10 <i>4</i> in ¹⁹⁸ Pt(⁷ Li,5n γ) (2017Bh02).
2237.5	(13 ⁻)	348.3 [@] 1	100 [@] 2	1889.2 (12 ⁻)	M1+E2	0.17 9	α (K)=0.13 8; α (L)=0.028 8; α (M)=0.0068 16 α (N)=0.0017 4; α (O)=3.2×10 ⁻⁴ 9; α (P)=2.6×10 ⁻⁵ 13

From ENSDF

 $^{200}_{81}\mathrm{Tl}_{119}$ -7

²⁰⁰₈₁Tl₁₁₉-7

					Adopte	d Levels, Gam	mas (continued)
						γ ⁽²⁰⁰ Tl) (con	tinued)
E _i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\dagger}	$\mathbf{E}_f \qquad \mathbf{J}_f^{\pi}$	Mult. ^{&}	α^{c}	Comments
							Mult.: $A_2 = -0.425$ and A_4 was set to zero in ¹⁹⁸ Pt(⁶ Li,4n γ) (1981Kr03); $A_2 = -0.235$, $A_4 = -0.018$, DCO(D)=0.721 and POL=-0.042 in ¹⁹⁸ Pt(⁷ Li,5n γ) (2017Bh02).
2237.5	(13 ⁻)	578.3 [@] 2	26.9 [@] 13	1659.4 (11-) E2	0.01999 28	α (K)=0.01481 21; α (L)=0.00393 6; α (M)=0.000960 13 α (N)=0.0002415 34; α (O)=4.47×10 ⁻⁵ 6; α (P)=3.22×10 ⁻⁶ 5 Mult.: DCO(D)=1.87 15, POL=+0.14 5 in ¹⁹⁸ Pt(⁷ Li,5n γ) (2017Bh02).
2438.0	(12 ⁺)	562.0 [@] 3	100 [@]	1876.0 (10+) (E2)	0.02134 <i>30</i>	α (K)=0.01572 22; α (L)=0.00426 6; α (M)=0.001046 15 α (N)=0.000263 4; α (O)=4.86×10 ⁻⁵ 7; α (P)=3.46×10 ⁻⁶ 5 Mult.: DCO(D+Q)=1.20 17 in ¹⁹⁸ Pt(⁷ Li,5n\gamma) (2017Bh02).
2548.2	(14 ⁻)	310.7 [@] 1	100 [@]	2237.5 (13-) M1(+E2)	0.23 13	$\alpha(K)=0.18\ 12;\ \alpha(L)=0.040\ 9;\ \alpha(M)=0.0097\ 18$ $\alpha(N)=0.0024\ 5;\ \alpha(O)=0.00046\ 11;\ \alpha(P)=3.6\times10^{-5}\ 17$ Mult.: A ₂ =-0.23 13 with A ₄ set to zero in ¹⁹⁸ Pt(⁶ Li,4n\gamma) (1981Kr03); DCO(Q)=0.47\ 2, POL=-0.05\ 2 in ¹⁹⁸ Pt(⁷ Li,5n\gamma) (2017Bh02).
		659.0 [@] 1	265.9 [@] 25	1889.2 (12-) E2	0.01494 21	α (K)=0.01136 <i>16</i> ; α (L)=0.00272 <i>4</i> ; α (M)=0.000661 <i>9</i> α (N)=0.0001662 <i>23</i> ; α (O)=3.10×10 ⁻⁵ <i>4</i> ; α (P)=2.346×10 ⁻⁶ <i>33</i> Mult.: A ₂ =+0.53 <i>5</i> , A ₄ =-0.02 <i>7</i> , DCO(Q)=1.02 <i>9</i> and POL=+0.14 <i>4</i> in ¹⁹⁸ Pt(⁷ Li,5n γ) (2017Bh02).
2630.4	(12 ⁻)	971.0 [@] 2	100 [@]	1659.4 (11-) (M1)	0.01775 25	α (K)=0.01464 21; α (L)=0.002388 33; α (M)=0.000555 8 α (N)=0.0001400 20; α (O)=2.72×10 ⁻⁵ 4; α (P)=2.59×10 ⁻⁶ 4 Mult.: POL=-0.21 10 in ¹⁹⁸ Pt(⁷ Li,5n\gamma) (2017Bh02).
2634.0		196.0 [@] 1	100 [@]	2438.0 (12+)		
2813.8		742.0 [@] 2	100 [@]	2071.8 (12-)		
2845.6	(14 ⁻)	773.8 [@] 2	100 [@]	2071.8 (12-) (E2)	0.01062 15	α (K)=0.00827 <i>12</i> ; α (L)=0.001789 <i>25</i> ; α (M)=0.000430 <i>6</i> α (N)=0.0001081 <i>15</i> ; α (O)=2.035×10 ⁻⁵ <i>29</i> ; α (P)=1.621×10 ⁻⁶ <i>23</i> Mult.: DCO(Q)=1.60 <i>55</i> in ¹⁹⁸ Pt(⁷ Li,5n γ) (2017Bh02).
2886.5	(14+)	997.3 [@] 2	100 [@]	1889.2 (12-) (M2)	0.0405 6	$\alpha(K)=0.0327\ 5;\ \alpha(L)=0.00596\ 8;\ \alpha(M)=0.001407\ 20$ $\alpha(N)=0.000356\ 5;\ \alpha(O)=6.91\times10^{-5}\ 10;\ \alpha(P)=6.46\times10^{-6}\ 9$ Mult.: DCO(D)=1.78\ 59, POL=-0.14\ 11\ in\ ^{198}Pt(^7Li,5n\gamma)\ (2017Bh02).
2922.2	(15 ⁻)	373.9 [@] 1	100 [@]	2548.2 (14-) M1+E2	0.14 8	$\alpha(K)=0.11\ 7;\ \alpha(L)=0.023\ 7;\ \alpha(M)=0.0055\ 15$ $\alpha(N)=0.0014\ 4;\ \alpha(O)=2.6\times10^{-4}\ 8;\ \alpha(P)=2.1\times10^{-5}\ 11$ Mult.: DCO(O)=0.44 4, POL=-0.04 4 in ¹⁹⁸ Pt(⁷ Li,5n\gamma) (2017Bh02).
3026.3	(15-)	478.0 [@] 1	100 [@]	2548.2 (14-) M1+E2	0.07 4	$\alpha(K)=0.057\ 35;\ \alpha(L)=0.011\ 4;\ \alpha(M)=0.0027\ 9$ $\alpha(N)=6.7\times10^{-4}\ 23;\ \alpha(O)=1.3\times10^{-4}\ 5;\ \alpha(P)=1.1\times10^{-5}\ 6$ Mult.: A ₂ =-0.32 15, A ₄ =+0.10 8, DCO(Q)=0.30 2, POL=-0.03 3 in ¹⁹⁸ Pt(⁷ Li,5n γ) (2017Bh02).
3114.1		565.9 [@] 3	100 [@]	2548.2 (14-)		

 ∞

²⁰⁰Tl₁₁₉-8

From ENSDF

 $^{200}_{81}\mathrm{Tl}_{119}$ -8

$\gamma(^{200}\text{Tl})$ (continued)

E _i (level)	\mathbf{J}_i^{π}	${\rm E_{\gamma}}^{\dagger}$	I_{γ}^{\dagger}	E_f	\mathbf{J}_{f}^{π}	Mult. ^{&}	α^{c}	Comments
3220.5	(15 ⁺)	982.9 [@] 2	100 [@]	2237.5 (1	13-)	M2	0.0421 6	α (K)=0.0340 5; α (L)=0.00621 9; α (M)=0.001467 21 α (N)=0.000371 5; α (O)=7.20×10 ⁻⁵ 10; α (P)=6.73×10 ⁻⁶ 9 Mult.: DCO(D)=1.82 19, POL=-0.17 4 in ¹⁹⁸ Pt(⁷ Li,5n γ) (2017Bh02).
3257.3	(13+)	1368.1 [@] 2	100 [@]	1889.2 (1	12-)	E1	1.47×10 ⁻³ 2	α (K)=0.001159 <i>16</i> ; α (L)=0.0001722 <i>24</i> ; α (M)=3.95×10 ⁻⁵ <i>6</i> α (N)=9.94×10 ⁻⁶ <i>14</i> ; α (O)=1.925×10 ⁻⁶ <i>27</i> ; α (P)=1.790×10 ⁻⁷ <i>25</i> ; α (IPF)=8.84×10 ⁻⁵ <i>12</i> Mult.: DCO(D)=1.03 <i>13</i> , POL=+0.06 5 in ¹⁹⁸ Pt(⁷ Li,5n γ) (2017Bb02)
3282.3	(16 ⁻)	256.0 [@] 1	32.8 [@] 25	3026.3 (1	15-)	M1	0.606 9	$\alpha(K)=0.496\ 7;\ \alpha(L)=0.0840\ 12;\ \alpha(M)=0.01962\ 28$ $\alpha(N)=0.00495\ 7;\ \alpha(O)=0.000962\ 14;\ \alpha(P)=9.10\times10^{-5}\ 13$ Mult.: DCO(Q)=0.47\ 7, POL=-0.15\ 8 in \ ^{198}Pt(^7Li,5n\gamma)\ (2017Bh02).
		734.4 [@] 2	100 [@] 5	2548.2 (1	14-)	E2	0.01185 17	α (K)=0.00916 13; α (L)=0.002045 29; α (M)=0.000493 7 α (N)=0.0001239 17; α (O)=2.326×10 ⁻⁵ 33; α (P)=1.824×10 ⁻⁶ 26 Mult.: DCO(Q)=0.85 5, POL=+0.08 4 in ¹⁹⁸ Pt(⁷ Li,5n γ) (2017Bh02).
3313.6	(14 ⁺)	(56.3 ^b 6)	_	3257.3 (1	13+)			
		93.1 [@] 3	29 [@] 7	3220.5 (1	15+)			
		1076.2 [@] 2	100 [@] 6	2237.5 (1	13-)	E1	2.10×10 ⁻³ 3	$\begin{aligned} \alpha(\text{K}) = 0.001760 \ 25; \ \alpha(\text{L}) = 0.000265 \ 4; \ \alpha(\text{M}) = 6.08 \times 10^{-5} \ 9 \\ \alpha(\text{N}) = 1.529 \times 10^{-5} \ 21; \ \alpha(\text{O}) = 2.96 \times 10^{-6} \ 4; \ \alpha(\text{P}) = 2.72 \times 10^{-7} \ 4 \\ \text{Mult.: DCO(D)} = 0.95 \ 10, \text{POL} = +0.05 \ 4 \text{ in } ^{198} \text{Pt}(^7 \text{Li}, 5n\gamma) \\ (2017Bh02). \end{aligned}$
3338.0	(16 ⁻)	311.7 [@] 1	22.4 [@] 19	3026.3 (1	15-)	(M1+E2)	0.23 13	α (K)=0.17 <i>12</i> ; α (L)=0.040 <i>9</i> ; α (M)=0.0096 <i>18</i> α (N)=0.0024 <i>5</i> ; α (O)=0.00045 <i>11</i> ; α (P)=3.6×10 ⁻⁵ <i>17</i> Mult.: DCO(O)=0.39 <i>4</i> in ¹⁹⁸ Pt(⁷ Li.5n γ) (2017Bh02).
		415.8 [@] 1	29.2 [@] 21	2922.2 (1	15-)	M1	0.1624 23	$\alpha(K)=0.1333 \ 19; \ \alpha(L)=0.02231 \ 31; \ \alpha(M)=0.00520 \ 7$ $\alpha(N)=0.001313 \ 18; \ \alpha(O)=0.000255 \ 4; \ \alpha(P)=2.416\times10^{-5} \ 34$ Mult : DCO(O)=0.48 4 POI =-0.11 7 in ¹⁹⁸ Pt(⁷ Li 5nx) (2017Bh02)
		492.4 [@] 1	13.9 [@] 11	2845.6 (1	14-)	(E2)	0.0292 4	$\alpha(K)=0.02079\ 29;\ \alpha(L)=0.00635\ 9;\ \alpha(M)=0.001571\ 22$ $\alpha(N)=0.000395\ 6;\ \alpha(O)=7.24\times10^{-5}\ 10;\ \alpha(P)=4.86\times10^{-6}\ 7$ Mult : DCO(O)=0.86 14 in ¹⁹⁸ Pt(⁷ L i 5ng) (2017Bh02)
		789.7 [@] 1	100 [@] 4	2548.2 (1	14-)	E2	0.01018 14	$\alpha(K)=0.00795 \ 11; \ \alpha(L)=0.001700 \ 24; \ \alpha(M)=0.000408 \ 6 \\ \alpha(N)=0.0001026 \ 14; \ \alpha(O)=1.933\times10^{-5} \ 27; \ \alpha(P)=1.549\times10^{-6} \ 22 \\ Mult.: \ A_2=+0.54 \ 1, \ A_4=+0.04 \ 1, \ DCO(Q)=0.85 \ 6, \ POL=+0.15 \ 4 \ in \\ \frac{198}{198}Pt(^7Li, 5n\gamma) \ (2017Bh02).$
3591.6	(15+)	278.0 [@] 1	100 [@]	3313.6 (1	14+)	M1+E2	0.31 17	α (K)=0.24 <i>16</i> ; α (L)=0.057 <i>10</i> ; α (M)=0.0138 <i>18</i> α (N)=0.0035 <i>5</i> ; α (O)=0.00065 <i>11</i> ; α (P)=5.0×10 ⁻⁵ <i>23</i> Mult.: DCO(D)=0.76 <i>5</i> , POL=-0.07 <i>5</i> in ¹⁹⁸ Pt(⁷ Li,5n γ) (2017Bh02).

					Adopt	ed Levels, Gai	nmas (continued)
						γ ⁽²⁰⁰ Tl) (co	ontinued)
E _i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\dagger}	$\mathbf{E}_f \qquad \mathbf{J}_f^{\pi}$	Mult. ^{&}	α^{c}	Comments
3608.7	(16 ⁻)	326.4 [@] 1	55 [@] 6	3282.3 (16 ⁻)	M1+E2	0.20 11	$\alpha(K)=0.15 \ 10; \ \alpha(L)=0.034 \ 9; \ \alpha(M)=0.0083 \ 18 \\ \alpha(N)=0.0021 \ 5; \ \alpha(O)=3.9\times10^{-4} \ 10; \ \alpha(P)=3.1\times10^{-5} \ 15 \\ Mult : DCO(O)=0.58 \ 4 \ POI =-0.02 \ 9 \ in \ ^{198}Pt(^{7}Li \ 5n\chi) \ (2017Bh02)$
		686.4 [@] 1	100 [@] 10	2922.2 (15 ⁻)	M1+E2	0.029 15	$\alpha(K) = 0.023 \ I3; \ \alpha(L) = 0.0042 \ I7; \ \alpha(M) = 1.0 \times 10^{-3} \ 4$ $\alpha(N) = 2.5 \times 10^{-4} \ I0; \ \alpha(O) = 4.8 \times 10^{-5} \ 20; \ \alpha(P) = 4.3 \times 10^{-6} \ 21$ Mult.: DCO(Q)=0.73 II, POL=-0.10 5 in ¹⁹⁸ Pt(⁷ Li,5n\gamma) (2017Bh02).
3665.0	(17 ⁻)	327.0 [@] 2	100 [@]	3338.0 (16 ⁻)			
3771.4	(16+)	179.8 [@] 1	100 [@] 5	3591.6 (15 ⁺)	M1+E2	1.1 5	α (K)=0.8 6; α (L)=0.254 28; α (M)=0.063 10 α (N)=0.0159 26; α (O)=0.00290 31; α (P)=1.9×10 ⁻⁴ 6 Mult.: DCO(D)=1.08 7 in ¹⁹⁸ Pt(⁷ Li,5n γ) (2017Bh02).
		457.3 [@] 8	68 [@] 3	3313.6 (14+)			
3799.7	(17 ⁻)	191.0 [@] 1	@	3608.7 (16 ⁻)	(M1)	1.368 <i>19</i>	α (K)=1.120 <i>16</i> ; α (L)=0.1906 <i>27</i> ; α (M)=0.0445 <i>6</i> α (N)=0.01124 <i>16</i> ; α (O)=0.002183 <i>31</i> ; α (P)=0.0002063 <i>29</i> Mult.: DCO(Q)=0.55 <i>4</i> in ¹⁹⁸ Pt(⁷ Li,5n γ) (2017Bh02).
		517.4 [@] 1	100 [@] 5	3282.3 (16 ⁻)	M1+E2	0.058 <i>33</i>	α (K)=0.047 28; α (L)=0.0089 35; α (M)=0.0021 8 α (N)=5.3×10 ⁻⁴ 20; α (O)=1.0×10 ⁻⁴ 4; α (P)=9.E-6 5 Mult.: DCO(O)=0.39 8, POL=-0.18 7 in ¹⁹⁸ Pt(⁷ Li.5n γ) (2017Bh02).
		773.4 [@] 2	43 [@] 6	3026.3 (15 ⁻)	(E2)	0.01063 15	α (K)=0.00828 <i>12</i> ; α (L)=0.001792 <i>25</i> ; α (M)=0.000430 <i>6</i> α (N)=0.0001083 <i>15</i> ; α (O)=2.037×10 ⁻⁵ <i>29</i> ; α (P)=1.623×10 ⁻⁶ <i>23</i> Mult.: POL=+0.07 <i>3</i> in ¹⁹⁸ Pt(⁷ Li,5ny) (2017Bh02).
3857.1	(18^{-})	(57.4 ^b 6)		3799.7 (17 ⁻)			
	(-)	$192.0^{@}2$	$24.5^{\textcircled{0}}$ 14	$3665.0 (17^{-})$			
		519.1 [@] 1	100 [@] 4	3338.0 (16 ⁻)	E2	0.0257 4	α (K)=0.01857 26; α (L)=0.00540 8; α (M)=0.001332 19 α (N)=0.000335 5; α (O)=6.16×10 ⁻⁵ 9; α (P)=4.23×10 ⁻⁶ 6 Mult.: DCO(Q)=0.82 4, POL=+0.14 4 in ¹⁹⁸ Pt(⁷ Li,5n\gamma) (2017Bh02).
		574.7 [@] 2	9.8 [@] 27	3282.3 (16 ⁻)	(E2)	0.02028 28	α (K)=0.01501 21; α (L)=0.00400 6; α (M)=0.000978 14 α (N)=0.0002460 35; α (O)=4.55×10 ⁻⁵ 6; α (P)=3.27×10 ⁻⁶ 5 Mult.: DCO(Q)=0.70 11 in ¹⁹⁸ Pt(⁷ Li,5n γ) (2017Bh02).
3928.7	(17 ⁺)	157.3 [@] 1	100 [@]	3771.4 (16 ⁺)	(M1)	2.364 <i>33</i>	α (K)=1.933 27; α (L)=0.330 5; α (M)=0.0771 11 α (N)=0.01947 27; α (O)=0.00378 5; α (P)=0.000357 5 Mult.: DCO(D)=0.91 14 in ¹⁹⁸ Pt(⁷ Li,5n γ) (2017Bh02).
		337.0 [@] 4	@	3591.6 (15 ⁺)			
4033.0	(18+)	104.4 [@] 2	100 [@] 4	3928.7 (17 ⁺)	M1+E2	6.3 13	α (K)=3.4 28; α (L)=2.2 11; α (M)=0.55 30 α (N)=0.14 8; α (O)=0.025 12; α (P)=0.001165 20 Mult.: DCO(D)=0.99 18 in ¹⁹⁸ Pt(⁷ Li,5n γ) (2017Bh02).
		261.7 [@] 1	70 [@] 6	3771.4 (16 ⁺)	(E2)	0.1683 24	$\alpha(K)=0.0888$ 12; $\alpha(L)=0.0596$ 8; $\alpha(M)=0.01533$ 22

From ENSDF

L

					Adop	oted Levels, Ga	ammas (continued)
						γ ⁽²⁰⁰ Tl) (continued)
E_i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\dagger}	$\mathbf{E}_f \mathbf{J}_f^{\pi}$	Mult. ^{&}	α ^C	Comments
							α (N)=0.00384 5; α (O)=0.000680 10; α (P)=3.26×10 ⁻⁵ 5 Mult.: POL=+0.06 9 in ¹⁹⁸ Pt(⁷ Li,5n γ) (2017Bh02).
4048.8	(19 ⁺)	191.5 [#] 3	100	3857.1 (18 ⁻)	E1 ^a	0.0846 12	α(K)=0.06886 99; α(L)=0.01209 18; α(M)=0.00282 4 $α(N)=0.000705 10; α(O)=0.0001316 19; α(P)=1.011×10^{-5} 15$ Mult.: Other: DCO(Q)=0.58 1 in ¹⁹⁸ Pt(⁷ Li,5nγ) (2017Bh02), consistent with D, where 191.5γ was assigned as (M1+E2).
4165.1	(20 ⁺)	116.3 [#] 3	100	4048.8 (19 ⁺)	M1 ^{<i>a</i>}	5.58 9	α (K)=4.56 7; α (L)=0.783 <i>12</i> ; α (M)=0.1829 <i>29</i> α (N)=0.0462 7; α (O)=0.00897 <i>14</i> ; α (P)=0.000847 <i>13</i>
4320.1	(20)	271.2 [@] 3	$100^{@}$	4048.8 (19 ⁺)	D		Mult.: DCO(Q)= $0.33 \ 4 \ \text{in}^{198}$ Pt(⁷ Li, $5n\gamma$) (2017Bh02).
4374.5	(19+)	341.5 [@] 1	100 [@]	4033.0 (18 ⁺)	M1	0.276 4	α (K)=0.2261 32; α (L)=0.0380 5; α (M)=0.00887 12 α (N)=0.002240 31; α (O)=0.000435 6; α (P)=4.12×10 ⁻⁵ 6 Mult.: DCO(D)=0.77 13.POL=-0.15 17 in ¹⁹⁸ Pt(⁷ Li.5ny) (2017Bh02).
4436.6	(21^{+})	271.5 [#] 3	100	4165.1 (20 ⁺)			
4652.5	(20^{+})	278.0 [@] 1	57 [@] 9	4374.5 (19 ⁺)			
		619.5 [@] 3	100 [@] 5	4033.0 (18 ⁺)	(E2)	0.01712 24	α (K)=0.01287 <i>18</i> ; α (L)=0.00323 <i>5</i> ; α (M)=0.000786 <i>11</i> α (N)=0.0001978 <i>28</i> ; α (O)=3.68×10 ⁻⁵ <i>5</i> ; α (P)=2.72×10 ⁻⁶ <i>4</i> Mult.: POL=+0.12 <i>2</i> in ¹⁹⁸ Pt(⁷ Li,5n γ) (2017Bh02).
4755.9	(21^{+})	435.8 [@] 1	@	4320.1 (20)			
		707.2 [@] 3	100 [@]	4048.8 (19 ⁺)	E2	0.01283 18	α (K)=0.00987 <i>14</i> ; α (L)=0.002256 <i>32</i> ; α (M)=0.000545 <i>8</i> α (N)=0.0001371 <i>19</i> ; α (O)=2.57×10 ⁻⁵ <i>4</i> ; α (P)=1.989×10 ⁻⁶ <i>28</i> Mult.: DCO(Q)=1.44 <i>25</i> ,POL=+0.05 <i>11</i> in ¹⁹⁸ Pt(⁷ Li,5n γ) (2017Bh02).
4827.6	(21+)	778.8 [@] 2	100 [@]	4048.8 (19 ⁺)	(E2)	0.01048 15	α (K)=0.00817 <i>11</i> ; α (L)=0.001760 <i>25</i> ; α (M)=0.000423 <i>6</i> α (N)=0.0001064 <i>15</i> ; α (O)=2.002×10 ⁻⁵ <i>28</i> ; α (P)=1.598×10 ⁻⁶ <i>22</i> Mult.: DCO(Q)=1.35 <i>28</i> in ¹⁹⁸ Pt(⁷ Li,5ny) (2017Bh02).
4872.5	(21+)	220.2 [#] 3		4652.5 (20 ⁺)	M1 ^{<i>a</i>}	0.920 13	$\alpha(K)=0.753 \ 11; \ \alpha(L)=0.1278 \ 19; \ \alpha(M)=0.0298 \ 4 \\ \alpha(N)=0.00754 \ 11; \ \alpha(O)=0.001464 \ 21; \ \alpha(P)=0.0001384 \ 20$
		436.1 ^{#} 4		4436.6 (21 ⁺)			
		707.2 [#] 3		4165.1 (20 ⁺)			
		823.6 [#] 3		4048.8 (19 ⁺)			
4898.7	(21+)	246.2 [@] 1	100 [@]	4652.5 (20 ⁺)	(M1+E2)	0.44 24	α (K)=0.33 23; α (L)=0.085 9; α (M)=0.0207 12 α (N)=0.00522 31; α (O)=0.00097 10; α (P)=7.1×10 ⁻⁵ 31 Mult.: DCO(D)=1.08 22,POL=-0.32 14 in ¹⁹⁸ Pt(⁷ Li,5n γ) (2017Bh02).
4943.5	(22 ⁺)	778.4 [#] 3		4165.1 (20 ⁺)			
5074.4	(22 ⁺)	909.3 [#] 2	100	4165.1 (20 ⁺)	(E2)	0.00765 11	α (K)=0.00607 8; α (L)=0.001207 17; α (M)=0.000287 4 α (N)=7.23×10 ⁻⁵ 10; α (O)=1.370×10 ⁻⁵ 19; α (P)=1.139×10 ⁻⁶ 16 Mult.: DCO(Q)=0.85 7 in ¹⁹⁸ Pt(⁷ Li,5n γ) (2017Bh02).

 $^{200}_{81}\mathrm{Tl}_{119}$ -11

γ (²⁰⁰Tl) (continued)

E _i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\dagger}	$\mathbf{E}_f = \mathbf{J}_f^{\pi}$	Mult. ^{&}	α ^{<i>c</i>}	Comments
5154.5	(22,23)	(80.1 ^b 7)		5074.4 (22 ⁺)			
		211.0 [#] 3	100	4943.5 (22+)			
5157.8	(22 ⁻)	285.3 [#] 3	100	4872.5 (21 ⁺)	E1 ^a	0.0322 5	$\alpha(K)=0.0264 4; \alpha(L)=0.00444 6; \alpha(M)=0.001033 15$ $\alpha(N)=0.000259 4; \alpha(O)=4.88 \times 10^{-5} 7; \alpha(P)=3.98 \times 10^{-6} 6$ Mult : Other: DCO(O)=0.40 5 POI = -0.06 2 in 198 Pt/ ⁷ Li 5 po) (2017Bh02)
5184.2	(22 ⁺)	285.5 [@] 1	100@	4898.7 (21+)	(M1+E2)	0.29 16	
5270.2	(22,23)	195.8 [#] 3		5074.4 (22+)			
		(327 #)		4943.5 (22+)			
5723.1	(23 ⁺)	452.9 [#] 2		5270.2 (22,23)			
		648.6 ^{#d} 3		5074.4 (22+)			
		850.6 [#] 2		4872.5 (21+)			
5907.0	(24-)	183.8 [#] 4		5723.1 (23+)			
		749.3 [#] 2		5157.8 (22-)			
		752.5 [#] 3		5154.5 (22,23)			
6006.3	(26 ⁻)	99.3 [#] 4	100	5907.0 (24-)	E2 ^a	6.10 14	α (K)=0.569 8; α (L)=4.12 10; α (M)=1.084 26 α (N)=0.271 6; α (O)=0.0466 11; α (P)=0.001461 33 B(E2)(W.u.)=2.08 10

[†] From ¹⁹⁸Pt(⁶Li,4n γ), unless otherwise stated.

[‡] From ²⁰⁰Pb ε decay.

[#] From 197 Au(207 Pb,x γ).

[@] From 198 Pt(7 Li,5n γ).

& From $\gamma(\theta)$ and the apparent $\Delta J=1$ band structure in ¹⁹⁸Pt(⁶Li,4n γ), and DCO and polarization data in ¹⁹⁸Pt(⁷Li,5n γ), unless otherwise stated. The quoted DCO values are for 90° and 157° geometry. DCO(Q) is for gate on a $\Delta J=2$, quadrupole transition, DCO(D) for gate on $\Delta J=1$, dipole and DCO(D+Q) for gate on a $\Delta J=1$, D+Q (or M1+E2) transition. Typical DCO(Q) values are ≈ 0.5 for $\Delta J=1$, dipole and ≈ 1.0 for $\Delta J=2$, quadrupole transitions. Typical DCO(D) values are ≈ 1.0 for $\Delta J=1$, dipole, and ≈ 2.0 for $\Delta J=2$, quadrupole transitions. The POL values are positive for electric multipole and negative for magnetic multipole.

^{*a*} From 197 Au(207 Pb,x γ) (2019Ro12), based on intensity balance.

^b Deduced from level-energy difference. Existence of this transition is required from $\gamma\gamma$ -coin data (2017Bh02).

^c Additional information 1.

^d Placement of transition in the level scheme is uncertain.

₈₁²⁰⁰Tl₁₁₉-12

Level Scheme

Intensities: Relative photon branching from each level

---- γ Decay (Uncertain)

Legend

Legend

Level Scheme (continued)

Intensities: Relative photon branching from each level

γ Decay (Uncertain) ----

 $^{200}_{81}\text{Tl}_{119}$

 $^{200}_{81}$ Tl $_{119}$ -15

From ENSDF

 $^{200}_{81}\mathrm{Tl}_{119}\text{--}15$

 $^{200}_{\ 81}\text{Tl}_{119}$