¹⁹⁸**Pt**(7 **Li**,5n γ) **2017Bh02**

History							
Туре	Author	Citation	Literature Cutoff Date				
Full Evaluation	F. G. Kondev	NDS 192,1 (2023)	1-Aug-2023				

2017Bh02: E(⁷Li)=45 MeV. Target: 95.7% enriched ¹⁹⁸Pt, 1.3 mg/cm² thick. Measured E γ , I γ , $\gamma\gamma$ -coin, $\gamma\gamma(\theta)$ (DCO), $\gamma\gamma$ (linear polarization), $\gamma(\theta)$ using INGA array at BARC-TIFR Pelletron LINAC facility.

200Tl Levels

E(level) [†]	$J^{\pi \ddagger}$	$T_{1/2}^{\#}$	Comments
0.0	2-		
324.00 25	3-		
541.0 <i>3</i>	4-		
753.8 3	7+	34.0 ms 10	
762.1 3	6^+	397 ns 17	
880.1 3	8 · 7-		
1023.7 3	/ 8 ⁺		
1244 2 3	9 ⁻	70 ns 5	I^{π} . From v^2 analysis of $v(\theta)$ and polarization data (2017Bh02)
1217.2°	8-	7.0 115 5	$1 \cdot 110 \ln \chi$ analysis of $\gamma(0)$ and potalization data (2017) $\beta(02)$.
12 + 7.5 + 1222 2 @ 4	0-		
1323.2 4	(8^{-})		
$1342.7 \neq 1442.7 \oplus 4$	10-		
1 + + 2.2 4 1650 $A^{(0)} A$	11-		
1039.4 - 4	(10^{+})		
1733.7 4	(10^{-})		
1876.0 4	(10^{+})		
1889.2 [@] 4	12-		
1892.6 4	(11^{+})		
2071.8 4	12-		
2237.6 [@] 4	13-		
2438.0 5	(12^{+})		
2548.3 [@] 4	14-		
2630.4 4	(12^{-})		
2634.0 5	(_)		
2813.8 4	()		
2886.6.5	(14^{+})		
2922.2 4	15-		
3026.3 [@] 4	15-		
3114.2 5	(¯)		
3220.5 4	15^{+}		
3257.4 4	13+		
3282.3 4	16-		
3313.7 ^{x} 4	14+		
3338.0 [@] 4	16-		
3591.7 ^{&} 5	15+		
3608.7 4	16-		
3665.0 [@] 4	(17 ⁻)		
3771.5 ^{&} 5	16+		
3799.7 4	(17 ⁻)		
3857.1 [@] 4	18-		
3928.8 <mark>&</mark> 5	17+		

¹⁹⁸**Pt**(⁷**Li**,**5** $n\gamma$) 2017Bh02 (continued)

²⁰⁰Tl Levels (continued)

E(level) [†]	$J^{\pi \ddagger}$	E(level) [†]	J ^π ‡	E(level) [†]	J ^π ‡	E(level) [†]	J ^{π‡}
4033.2 ^{&} 5	18+	4374.7 <mark>&</mark> 5	19+	4827.9 5	(21 ⁻)	5038.9 5	
4049.1 [@] 4	$19^{(-)}$	4652.7 ^{&} 5	(20^{+})	4898.9 ^{&} 5	(21^{+})	5041.9 [@] 5	$22^{(-)}$
4320.4 [@] 5	$20^{(-)}$	4756.2 [@] 5	21(-)	4958.5 5	21(-)	5184.4 ^{&} 5	(22^{+})

[†] From a least-squares fit to E γ . [‡] From 2017Bh02, based on γ -ray transition multipolarity assignments from $\gamma\gamma(\theta)$ and $\gamma\gamma($ lin pol) data, and band assignments.

From Adopted Levels.

[#] From Adopted Levels. [@] Band(A): Band based on 8⁻ state at 1247.3 keV. Probable configuration= $\pi(h_{9/2}^{-1}) \otimes v(i_{13/2}^{-1})$. [&] Band(B): Band based on 14⁺ state at 3313.6 keV. Configuration= $\pi(h_{9/2}^{-1}) \otimes v(i_{13/2}^{-2}, (f_{5/2}/p_{3/2})^{-1})$.

E_{γ}^{\dagger}	I_{γ}^{\dagger}	E _i (level)	\mathbf{J}_i^{π}	E_f	\mathbf{J}_{f}^{π}	Mult. [†]	Comments
$(3.1^{\ddagger} 5)$		1247.3	8-	1244.2	9-		
(16.6 [‡] 6)		1892.6	(11^{+})	1876.0	(10^{+})		
(56.3 [‡] 9)		3313.7	14+	3257.4	13+		
(50.5)		3857 1	19-	3700 7	(17^{-})		
(37.4, 0)		1323.2	10 Q-	1247 3	(17) 8-		
9313	2 04 51	3313.7	14+	3220.5	15+		
104.4.2	2.19.9	4033.2	18+	3928.8	17+	M1+E2	DCO(D) = 0.99.18
119.2 /	19.36 96	1442.2	10^{-10}	1323.2	9-	M1	DCO(D) = 1.11.3
132.4 <i>I</i>	10.79 54	886.1	8+	753.8	7+	M1+E2	$DCO(D)=1.30 \ 3$
157.3 <i>I</i>	4.53 17	3928.8	17^{+}	3771.5	16+	M1	DCO(D)=0.91 14
175.7 <i>1</i>	10.56 45	1892.6	(11^{+})	1716.9	(10^{+})	(M1+E2)	DCO(D+Q)=0.75 12
179.2 <i>1</i>	11.92 48	2071.8	12-	1892.6	(11^{+})	(E1)	DCO(D+Q)=0.82 8
179.8 <i>1</i>	2.88 14	3771.5	16+	3591.7	15+	M1+E2	DCO(D)=1.08 7
191.0 <i>1</i>		3799.7	(17^{-})	3608.7	16-	(M1)	DCO(Q)=0.55 4
192.0 2	3.40 19	3857.1	18-	3665.0	(17^{-})		
192.0 <i>1</i>	12.62 66	4049.1	$19^{(-)}$	3857.1	18-	(M1+E2)	DCO(Q)=0.58 1
194.7 <i>1</i>	2.06 33	1442.2	10^{-}	1247.3	8-		
196.0 <i>1</i>	1.58 22	2634.0	(_)	2438.0	(12^{+})		
211.0 2	0.70 15	5038.9		4827.9	(21^{-})		
213.0 2		753.8	7+	541.0	4-		
217.0 2		541.0	4-	324.00	3-		
217.2 1	66 <i>3</i>	1659.4	11-	1442.2	10-	M1+E2	DCO(Q)=0.42 3
220 4 1		1044.0	0-	1002.7	7-	F 2	POL = -0.06 3.
220.4 1		1244.2	9	1023.7	/	E2	$DCO(Q) = 0.84 \ I/$
221.0.1		762 1	6+	541.0	4-		$10L - \pm 0.352$.
229.8 1	51.2	1889.2	12-	1659.4	11-	M1+E2	DCO(0) = 0.46 l
22010 1	012	1007.2		100711			POL = -0.04 2.
246.2 1	3.57 12	4898.9	(21^{+})	4652.7	(20^{+})	(M1+E2)	DCO(D)=1.08 22
					. ,		POL=-0.32 14.
256.0 1	3.34 25	3282.3	16-	3026.3	15-	M1	DCO(Q)=0.47 7
							POL=-0.15 8.
261.6 1		1023.7	7-	762.1	6+	E1	DCO(Q)=0.49 7
							$POL=+0.12 \ 9.$
261.7 <i>1</i>	1.53 13	4033.2	18+	3771.5	16+	(E2)	POL=+0.06 9.
271.2 3	0.93 <i>3</i>	4320.4	$20^{(-)}$	4049.1	$19^{(-)}$	(M1+E2)	DCO(Q)=0.33 4
278.0 [#] 1	7.48 [#] 25	3591.7	15+	3313.7	14 ⁺	M1+E2	DCO(D)=0.76 5 POL=-0.07 5.

 $\gamma(^{200}\text{Tl})$

Continued on next page (footnotes at end of table)

198 Pt(7 Li,5n γ) **2017Bh02** (continued)

γ ⁽²⁰⁰Tl) (continued) I_{γ}^{\dagger} E_{γ}^{\dagger} Mult.[†] δ^{\dagger} E_i (level) J_i^{π} J_{f}^{π} Comments E_f 278.0[#] 1 1.12[#] 17 (20^{+}) 4652.7 4374.7 19+ (22^{+}) 285.5 1 1.80 11 5184.4 4898.9 (21+) (M1+E2) POL=-0.08 15. 0.99 19 5041.9 $22^{(-)}$ 4756.2 21⁽⁻⁾ DCO(Q)=0.40 5 285.7 1 M1+E2POL=-0.06 2. 8^+ 287.7 1 56 1 1173.8 886.1 8+ M1+E2 DCO(D+Q)=1.33 5 POL=+0.13 7. Mult.: $\Delta J=0$ transition. 310.7 1 31 2 2548.3 14^{-} 2237.6 13-M1 DCO(Q)=0.47 2 POL=-0.05 2. 311.7 1 3.78 32 3338.0 16-3026.3 15-(M1+E2) DCO(Q)=0.39 4 324.0 3 324.00 3- $0.0\ 2^{-}$ 326.0 2 1349.7 (8^{-}) 1023.7 7-326.4 1 1.61 16 3608.7 16^{-} 3282.3 16-M1+E2 DCO(Q)=0.58 4 POL=-0.02 9. Mult.: $\Delta J=0$ transition. 327.0 2 0.34 7 3665.0 (17^{-}) 3338.0 16-11-336.3 3 2.51 33 1659.4 1323.2 9-E2 DCO(Q)=0.89 13 17^{+} 337.0 4 3928.8 3591.7 15+ 19^{+} 341.5 1 9.40 14 4374.7 4033.2 18+ M1 DCO(D)=0.77 13 POL=-0.15 17. 348.3 1 50 1 2237.6 13^{-} 1889.2 12-M1+E2 A2=-0.23 5; A4=-0.01 8 DCO(D)=0.72 1 POL=-0.04 2. 9- $886.1 \ 8^+$ 358.1 1 36.83 67 1244.2 DCO(Q)=0.60 2 E1 POL=+0.09 3. 373.9 1 7.48 38 2922.2 15^{-} 2548.3 14-M1+E2DCO(0)=0.44 4 POL=-0.04 4. 384.0 1 1733.7 (9^{-}) 1349.7 (8⁻) 1659.4 11-DCO(D)=0.84 20 412.4 l10.12 53 2071.8 12^{-} M1POL=-0.10 4. 415.8 1 4.93 35 3338.0 16^{-} 2922.2 15-M1 DCO(Q)=0.48 4 POL=-0.11 7. 8^+ 753.8 7+ 420.0 1 23.21 61 1173.8 M1+E2 A₂=-0.66 10; A₄=+0.06 16 POL=+0.02 3. $21^{(-)}$ 4320.4 20(-) 4756.2 435.8 1 447.02 10.49 51 1889.2 12^{-} 1442.2 10-E2 DCO(Q)=1.07 8 POL=+0.05 4. 1.95 9 3313.7 14+ 457.3 8 3771.5 16^{+} A₂=-0.32 15; A₄=+0.10 8 $478.0 \ 1$ 6.74 49 3026.3 15 2548.3 14-M1+E2DCO(Q)=0.30 2 POL=-0.03 3. 490.4 1 100 4 1244.2 9-753.8 7+ M2+E3 ≈0.25 A₂=+0.55 5; A₄=+0.05 8 DCO(Q)=1.01 2 POL=-0.10 2. δ: From χ^2 analysis of $\gamma(\theta)$ and polarization data in 2017Bh02. (E2) DCO(Q)=0.86 14 492.4 1 2.34 18 3338.0 16^{-} 2845.6 (14-) 493.8 7 5.89 69 1247.3 8-753.8 7+ DCO(Q)=0.39 8 517.4 *I* 2.64 14 3799.7 (17^{-}) 3282.3 16-M1+E2 POL=-0.18 7. 519.1 1 13.86 58 3857.1 18^{-} 3338.0 16-E2 DCO(Q)=0.82 4 POL=+0.14 4. 4-541.0 4 541.0 0.0 2-1716.9 (10^{+}) 1173.8 8+ DCO(D+Q)=1.29 9 543.1 *1* 19.77 45 (E2)

Continued on next page (footnotes at end of table)

POL=+0.06 4.

¹⁹⁸Pt(⁷Li,5nγ) **2017Bh02** (continued)

$\gamma(^{200}\text{Tl})$ (continued)

E_{γ}^{\dagger}	I_{γ}^{\dagger}	E_i (level)	\mathbf{J}_i^π	$\mathbf{E}_f \mathbf{J}_f^{\pi}$	Mult. [†]	Comments
562.0 3	5.73 17	2438.0	(12^{+})	1876.0 (10 ⁺)	(E2)	DCO(D+O)=1.20 17
565.9 3	3.59 43	3114.2	(_)	2548.3 14-		
574.7 2	1.36 38	3857.1	18-	3282.3 16-	(E2)	DCO(Q)=0.70 11
578.3 2	13.43 63	2237.6	13-	1659.4 11-	E2	DCO(D)=1.87 15
						POL=+0.14 5.
619.5 <i>3</i>	1.98 9	4652.7	(20^{+})	4033.2 18+	(E2)	POL=+0.12 2.
659.0 <i>1</i>	20.42 78	2548.3	14-	1889.2 12-	E2	$A_2 = +0.53 5; A_4 = -0.02 7$
						DCO(Q) = 1.029
						POL=+0.14 4.
686.4 <i>1</i>	2.93 30	3608.7	16-	2922.2 15-	M1+E2	DCO(Q)=0.73 11
						POL=-0.10 5.
702.2 2	15.24 78	1876.0	(10^{+})	1173.8 8+	(E2)	DCO(D+Q)=0.92 11
						POL=+0.11 5.
707.2 3	1.57 <i>51</i>	4756.2	$21^{(-)}$	$4049.1 19^{(-)}$	E2	DCO(Q)=1.44 25
						POL=+0.05 11.
734.4 2	10.18 53	3282.3	16-	2548.3 14-	E2	DCO(Q)=0.85 5
						POL=+0.08 4.
742.0 2	2.80 89	2813.8	(_)	2071.8 12-		
773.4 2	1.13 17	3799.7	(17^{-})	3026.3 15-	(E2)	POL=+0.07 3.
773.8 2	1.07 9	2845.6	(14 ⁻)	2071.8 12-	(E2)	DCO(Q)=1.60 55
778.8 2	2.19 22	4827.9	(21^{-})	$4049.1 19^{(-)}$	(E2)	DCO(Q)=1.35 28
789.7 <i>1</i>	16.88 72	3338.0	16-	2548.3 14-	E2	$A_2 = +0.54 \ l; A_4 = +0.04 \ l$
						DCO(Q)=0.85 6
						A_4 should be negative for $\Delta J=2$, E2.
				()		POL=+0.15 4.
909.4 2	1.85 20	4958.5	$21^{(-)}$	$4049.1 19^{(-)}$	(E2)	DCO(Q)=0.85 7
971.0 2	1.85 17	2630.4	(12^{-})	1659.4 11-	(M1)	POL=-0.21 10.
982.9 2	5.82 36	3220.5	15^{+}	2237.6 13-	M2	DCO(D)=1.82 19
						POL=-0.17 4.
997.3 2	2.42 20	2886.6	(14^{+})	$1889.2 \ 12^{-}$	(M2)	DCO(D)=1.78 59
10760.0	6.07.40	2212 5	1.4+	2227 (12-	-	POL = -0.14 II.
10/6.2 2	6.97 40	3313.7	14+	2237.6 13-	EI	DCO(D)=0.95 10
10(0.1.2	1 00 00	0057.4	10+	1000 0 10-	F 1	POL=+0.05 4.
1368.1 2	4.23 28	5257.4	13	1889.2 12	EI	$DCU(D)=1.03 \ I3$
						$POL = +0.06 \ 3.$

[†] From 2017Bh02. Multipolarities for individual γ -ray transitions are based on $\gamma\gamma(\theta)$ and polarization data. DCO values are for 90° and 157° geometry. DCO(Q) is for gate on a $\Delta J=2$, quadrupole transition, DCO(D) for gate on $\Delta J=1$, dipole and DCO(D+Q) for gate on a $\Delta J=1$, D+Q (or M1+E2) transition. Typical DCO(Q) values are ≈ 0.5 for $\Delta J=1$, dipole and ≈ 1.0 for $\Delta J=2$, quadrupole transitions. Typical DCO(D) values are ≈ 1.0 for $\Delta J=1$, dipole transitions. The POL values are positive for electric multipole and negative for magnetic multipole.

[‡] Deduced from level-energy difference. Existence of this transition is required from $\gamma\gamma$ -coin data (2017Bh02).

[#] Multiply placed with intensity suitably divided.

¹⁹⁸Pt(⁷Li,5nγ) 2017Bh02

6

¹⁹⁸Pt(⁷Li,5nγ) 2017Bh02

		В	and(B): Band based on 14 ⁺ state at 3313.6 keV			
Band(A)	Band based at 1247.3 ke	on 8 [–] state V	(22+)		5184.4	
22 ⁽⁻⁾		5041.9		286		
	286		(21+)		4898.9	
21 ⁽⁻⁾		4756.2		246		
			(20+)	_	4652.7	
	436			278		
20 ⁽⁻⁾	707	4320.4	<u>19</u> +	620	4374.7	
	271			342		
19 ⁽⁻⁾		4049.1	18 ⁺	_ + +	4033.2	
18-	192	3857.1	<u>17</u> +	104 262	3928.8	
	192		<u>16+</u> 33	157	3771.5	
(17 ⁻)		3665.0	15+	180	3591.7	
	327			457		
16-		3338.0	14 ⁺	278	3313.7	
		·		_ • •		
15-	312	2026 2				
15	790	5020.5				
	478					
	470					
14-		2548.3				
	311					
13-		2237.6				
	035					
	348					
12-	5/6	1889.2				
11-	230	1659.4				
	217					
10-	336	1442.2				
<u>9</u> - 8-	119 195 76	1323.2 1247.3				
		•				

 $^{200}_{81}{\rm Tl}_{119}$