200 Ir β^- decay **2013Mo20**

History									
Туре	Author	Citation	Literature Cutoff Date						
Full Evaluation	F. G. Kondev	NDS 192,1 (2023)	1-Aug-2023						

Parent: ²⁰⁰Ir: E=0.0; J^{π}=(2⁻,3⁻); T_{1/2}=43 s 6; Q(β ⁻)=5030 syst; % β ⁻ decay=100 ²⁰⁰Ir-Q(β ⁻): 5030 keV 200 (syst, 2021Wa16).

²⁰⁰Ir produced in fragmentation of ²⁰⁸Pb beam with $E(^{208}Pb)=1$ GeV/A impinging on a 2.5 g/cm² thick Be target. The beam was provided by SIS-18 synchrotron at GSI facility. Residues of interest were separated using Fragment Separator. Measured E γ , I γ , $\gamma\gamma$ -coin, $\beta\gamma$ -coin, fragment- γ correlated event using RISING array comprising of 15 cluster HpGe detectors. Nine DSSSD detectors were used for particle detection.

²⁰⁰Pt Levels

The decay scheme is incomplete and, as a consequence, no β^- feedings and log *ft* values are given. Apparent β^- feedings that were determined in 2013Mo20 are given as comments.

E(level) [†]	$J^{\pi \ddagger}$	T _{1/2}	Comments				
0.0	0^{+}	12.6 h 3	T _{1/2} : From Adopted Levels.				
470.1 12	2+		I_{a} (apparent)=24% 14 in 2013Mo20.				
867.5 16	$(2)^{+}$		I_{β} -(apparent)<8% in 2013Mo20.				
1102.6 23	4+		$I_{\beta^{-}}(apparent) = 13\% 4 \text{ in } 2013 \text{ Mo20}.$				
1181.1 15	$(3)^{+}$		$I_{\beta^{-}}(apparent) = 8\% 2 \text{ in } 2013\text{Mo20}.$				
1624.9 18			$I_{\beta^{-}}(apparent)=29\% \ 6 \ in \ 2013Mo20.$				
1690.4 24			$I_{\beta^{-}}(apparent) = 9\% \ 3 \ in \ 2013Mo20.$				
1730.4 14	(2^{+})		$I_{\beta^{-}}(apparent) = 2.3\%$ 10 in 2013Mo20.				
1833.4 19			$I_{\beta^{-}}(apparent) = 2.2\% \ 9 \ in \ 2013 Mo20.$				
1850.4 22	(2^{+})		I_{β} -(apparent)=13% 4 in 2013Mo20.				

[†] From a least-squares fit to $E\gamma$.

[‡] From Adopted Levels.

 $\gamma(^{200}\text{Pt})$

I γ normalization: The decay scheme is incomplete and, as a consequence, no normalization to absolute emission probabilities is given.

E_{γ}^{\dagger}	I_{γ}^{\dagger}	E_i (level)	\mathbf{J}_i^{π}	$E_f J_f^{\pi}$	E_{γ}^{\dagger}	I_{γ}^{\dagger}	E_i (level)	\mathbf{J}_i^{π}	$\mathbf{E}_f \mathbf{J}_f^{\pi}$
313.7 14	7.5 9	1181.1	$(3)^{+}$	867.5 (2)+	757 2	12.4 16	1624.9		$\overline{867.5}$ (2) ⁺
397.3 16	42 <i>3</i>	867.5	$(2)^{+}$	470.1 2+	822.9 17	8.6 13	1690.4		$867.5 (2)^+$
470.1 12	100 7	470.1	2+	$0.0 \ 0^+$	982.9 15	13.3 18	1850.4	(2^{+})	867.5 (2)+
632.5 19	13.0 15	1102.6	4^{+}	470.1 2+	1155.0 16	16 2	1624.9		470.1 2+
652.3 11	2.2 6	1833.4		$1181.1 (3)^+$	1260.3 7	2.3 7	1730.4	(2^{+})	470.1 2+
711	2.5 6	1181.1	$(3)^{+}$	470.1 2+					

[†] From 2013Mo20.

$\frac{200}{10}$ Ir β^{-} decay 2013Mo20

Decay Scheme

 $^{200}_{78}{\rm Pt}_{122}$