Jπ‡

 $T_{1/2}$

E(level)[†]

²⁰⁰At ε decay (43 s+47 s) **1998Bi06,1992Hu04**

History						
Туре	Author	Citation	Literature Cutoff Date			
Full Evaluation	F. G. Kondev, S. Lalkovski	NDS 108,1471 (2007)	1-Aug-2006			

Parent: ²⁰⁰At: E=0; $J^{\pi}=(3^+)$; $T_{1/2}=43 \text{ s } l$; $Q(\varepsilon)=7967 28$; $\%\varepsilon+\%\beta^+$ decay=43 6

Parent: ²⁰⁰At: E=113 5; $J^{\pi}=(7^+)$; $T_{1/2}=47$ s *1*; $Q(\varepsilon)=7967$ 28; $\%\varepsilon+\%\beta^+$ decay ≤ 57.0

1998Bi06: mass separated source produced using nat $Re(^{20}Ne,xn\gamma)$ reaction at $E(^{20}Ne)=200$ MeV; Detectors: HPGE, LEPS,

Si(Li); Measured: E γ , I γ , ce, γ , x and ce singles, $\gamma\gamma(t)$, $\gamma X(t)$, $\gamma ce(t)$ and $xce(\gamma)$; Other: 1995Bi17.

1992Hu04: mass separated source was produced using nat Re(²⁰Ne,xnγ) reaction; Detectors:Ge(Li), Si(Li), surface barrier detectors; Measured: Eγ, Iγ, ce, Eα, Iα, γ-ray singles.

The data of 1998Bi08 and 1992Hu04 are consistent with each other, except that the level reported at 1842 keV in 1992Hu04 was not confirmed in 1998Bi08.

²⁰⁰Po Levels

Comments

0 665.90 17 1136.50 20 1276.8 3 1392.30 17 1652.0 3 1761.3 3 1772.0 4	$ \begin{array}{c} 0^{+} \\ 2^{+} \\ 0^{+} \\ 4^{+} \\ 2^{+} \\ (1,2,3) \\ 6^{+} \\ (2,4,5) \end{array} $	(i))+	.51 min	8 T _{1/2}	2: Fro	m Adopte	d Levels.	
1772.9 4 1773.6 4 1776.2 3 1791.4 4 1811.2 3	(3,4,5 8 ⁺	6)' 6	ns <i>3</i>	T _{1/2}	2: Fro	m Adopte	d Levels.	
1811.2 3 1850.5 4 1883.1 4 2085.5 8 2135.1 4 2220.5 4	(3,4,5 (2,6) ⁺ 7 ⁻ (4,5,6	(j)+ (j)-						
2261.2 4 2329.7 5 2337.5 4 2360.5 5	(7,8,9	9)+						
2414.4 <i>4</i> 2461.6 <i>4</i> 2462.0 <i>4</i>	$(5)^{-}$ (5,6,7) (4,5,6)	7)+ 6)-						
[†] From lea [‡] From add	ist-squa opted g	res fit t ammas.	ο Εγ.					
							<u>γ(²⁰⁰Po)</u>	
E_{γ}^{\dagger} I	γ ^{†@}	E _i (leve	1) J_i^{π}	E_f	\mathbf{J}_{f}^{π}	Mult. [‡]	α&	Comments
(12.3 4)		1773.6	8+	1761.3	6+	[E2]	4.9×10 ⁴ 9	$\begin{array}{l} \alpha(\mathrm{M}){=}3.7{\times}10^4 \ 7; \ \alpha(\mathrm{N}{+}){=}1.15{\times}10^4 \ 21 \\ \alpha(\mathrm{N}){=}9.5{\times}10^3 \ 17; \ \alpha(\mathrm{O}){=}1.8{\times}10^3 \ 4; \ \alpha(\mathrm{P}){=}1.6{\times}10^2 \ 3 \\ \alpha(\mathrm{N}){=}9.5{\times}10^3 \ 22; \ \alpha(\mathrm{O}){=}1.8{\times}10^3 \ 5; \ \alpha(\mathrm{P}){=}1.6{\times}10^2 \ 4 \\ \mathrm{E}_{\gamma}: \ \mathrm{From \ Adopted \ Levels, \ based \ on \ the \ energy \ difference \ between \ the \ 373.8 \ keV \ 2 \ and \ 361.5 \ keV \ 2 \ gamma-rays \ that \ depopulate \ the \ J^{\pi}{=}7^{-} \ level \ a \ 2135 \ keV. \end{array}$
125.7 3 ().3 2	2261.2	9-	2135.1	7-	E2 [#]	2.77 5	$\alpha(K)=0.391$ 6; $\alpha(L)=1.76$ 4; $\alpha(M)=0.470$ 9;

Continued on next page (footnotes at end of table)

²⁰⁰At ε decay (43 s+47 s) 1998Bi06,1992Hu04 (continued)

γ ⁽²⁰⁰Po) (continued)</sup>

E_{γ}^{\dagger}	$I_{\gamma}^{\dagger @}$	E_i (level)	\mathbf{J}_i^{π}	$E_f J_f^{\pi}$	Mult. [‡]	α &	Comments
323.8 2	2.4 6	2135.1	7-	1811.2 5-	E2	0.1007	$\begin{aligned} \alpha(N+) = 0.145 \ 3 \\ \alpha(N) = 0.1203 \ 22; \ \alpha(O) = 0.0229 \ 4; \ \alpha(P) = 0.00208 \ 4 \\ E_{\gamma}, I_{\gamma}: \ From adopted gammas. \\ \alpha(K) = 0.0564 \ 8; \ \alpha(L) = 0.0330 \ 5; \ \alpha(M) = 0.00854 \ 13; \\ \alpha(N+) = 0.00267 \ 4 \\ \alpha(N) = 0.00219 \ 4; \ \alpha(O) = 0.000429 \ 6; \\ \alpha(P) = 4.34 \times 10^{-5} \ 7 \\ \alpha(N) = 0.00220 \ 4; \ \alpha(O) = 0.000429 \ 6; \end{aligned}$
361.5 2	0.7 2	2135.1	7-	1773.6 8+	E1 [#]	0.0206	α (P)=4.35×10 ⁻⁵ 7 Mult.: α (K)exp=0.23 6, α (L)exp=0.047 13. α (K)=0.01683 24; α (L)=0.00286 4; α (M)=0.000671 10; α (N+)=0.000211 3 α (N)=0.0001713 24; α (O)=3.52×10 ⁻⁵ 5;
373.8 2	7.1 7	2135.1	7-	1761.3 6+	E1	0.0191	$\alpha(P)=4.30\times10^{-6} \ 6$ $\alpha(N)=0.0001712 \ 24; \ \alpha(O)=3.51\times10^{-5} \ 5; \ \alpha(P)=4.29\times10^{-6} \ 6$ $\alpha(K)=0.01564 \ 22; \ \alpha(L)=0.00265 \ 4; \ \alpha(M)=0.000621 \ 9; \ \alpha(N+)=0.000195 \ 3$ $\alpha(N)=0.0001586 \ 23; \ \alpha(O)=3.26\times10^{-5} \ 5; \ \alpha(P)=3.99\times10^{-6} \ 6$ $\alpha(N)=0.0001584 \ 23; \ \alpha(O)=3.25\times10^{-5} \ 5; \ \alpha(N)=0.0001584 \ 23; \ \alpha(O)=3.25\times10^{-5} \ 5; \ \alpha(N)=0.0001584 \ 23; \ \alpha(N)=3.25\times10^{-5} \ 5; \ \alpha(N)=0.0001584 \ 23; \ \alpha(N)=0.0001584 \ 23; \ \alpha(N)=3.25\times10^{-5} \ 5; \ \alpha(N)=0.0001584 \ 23; \ \alpha(N)=3.25\times10^{-5} \ 5; \ \alpha(N)=0.0001584 \ \alpha(N)=0.00001584 \ \alpha(N)=0.00001584 \ \alpha(N)=0.00001584 \ \alpha(N)=0.00000000000000000000000000000000000$
409.3 2	2.5 4	2220.5	(4,5,6) ⁻	1811.2 5-	M1+E2	0.14 9	$\begin{aligned} &\alpha(P) = 3.98 \times 10^{-6} \ 6 \\ &\text{Mult.: } \alpha(K) \exp < 0.09. \\ &\alpha(K) = 0.11 \ 8; \ \alpha(L) = 0.023 \ 9; \ \alpha(M) = 0.0054 \ 18; \\ &\alpha(N+) = 0.0017 \ 6 \\ &\alpha(N) = 0.0014 \ 5; \ \alpha(O) = 0.00029 \ 11; \ \alpha(P) = 3.5 \times 10^{-5} \\ &16 \end{aligned}$
484.4 2	48 4	1761.3	6+	1276.8 4+	E2	0.0346	Mult.: $\alpha(K)\exp=0.15 5.$ $\alpha(K)=0.0237 4; \alpha(L)=0.00826 12; \alpha(M)=0.00208$ $3; \alpha(N+)=0.000653 10$ $\alpha(N)=0.000534 8; \alpha(O)=0.0001065 15;$ $\alpha(P)=1.162\times10^{-5} 17$ $\alpha(N)=0.000534 8; \alpha(O)=0.0001064 15;$ $\alpha(P)=1.161\times10^{-5} 17$
488.4 2	1.8 6	2261.2	9-	1773.6 8+	E1 [#]	0.01078	Mult.: α (K)exp=0.0239, α (L)exp=0.00838. α (K)=0.00887 <i>13</i> ; α (L)=0.001460 <i>21</i> ; α (M)=0.000342 <i>5</i> ; α (N+)=0.0001076 <i>15</i> α (N)=8.73×10 ⁻⁵ <i>13</i> ; α (O)=1.80×10 ⁻⁵ <i>3</i> ; α (R)=2.24×10 ⁻⁶ <i>4</i>
496.3 2	2.2 6	1772.9	(3,4,5)+	1276.8 4+	M1(+E2)	0.08 5	$\alpha(K) = 0.06 \ 5; \ \alpha(L) = 0.013 \ 6; \ \alpha(M) = 0.0031 \ 12; \alpha(N+) = 0.0010 \ 4 \alpha(N) = 0.0008 \ 3; \ \alpha(O) = 0.00017 \ 7; \ \alpha(P) = 2.0 \times 10^{-5} \ 10 \alpha(N) = 0.001107 \ 16; \ \alpha(O) = 0.000232 \ 4; \alpha(P) = 3.00 \times 10^{-5} \ 5$
514.6 2 518.5 <i>3</i> 534.3 2	4.5 6 1.5 4 16 3	1791.4 2329.7 1811.2	5-	1276.8 4 ⁺ 1811.2 5 ⁻ 1276.8 4 ⁺	E1	0.00896	Mult.: $\alpha(K)=0.00738 \ 11$; $\alpha(L)=0.001206 \ 17$; $\alpha(M)=0.000282 \ 4$; $\alpha(N+)=8.88\times10^{-5} \ 13$ $\alpha(N)=7.20\times10^{-5} \ 11$; $\alpha(O)=1.488\times10^{-5} \ 21$; $\alpha(P)=1.86\times10^{-6} \ 3$ $\alpha(N)=7.20\times10^{-5} \ 10$; $\alpha(O)=1.487\times10^{-5} \ 21$; $\alpha(P)=1.85\times10^{-6} \ 3$

²⁰⁰At ε decay (43 s+47 s) 1998Bi06,1992Hu04 (continued) $\gamma(^{200}\text{Po})$ (continued) $I_{\gamma}^{\dagger @}$ α**&** Mult.[‡] E_{γ}^{\dagger} E_i (level) J_i^{π} \mathbf{J}_{f}^{π} Comments \mathbf{E}_{f} Mult.: $\alpha(K)\exp=0.0075$ 14; Other: $\alpha(K)\exp$ in 1992Hu04. 549.3 3 0.7 3 2360.5 1811.2 5-564.6 2 13 3 2337.5 $(7,8,9)^+$ 1773.6 8^{+} M10.0923 $\alpha(K)=0.0753 \ 11; \ \alpha(L)=0.01295 \ 19;$ α(M)=0.00305 5; α(N+..)=0.000970 14 α (N)=0.000784 *11*; α (O)=0.0001642 *23*; $\alpha(P)=2.12\times10^{-5}$ 3 Mult.: α (K)exp=0.09 2, α (L)exp=0.014 3; Other: $\alpha(K)$ exp in 1992Hu04. E_{γ} : This transition is observed to be delayed with $T_{1/2} \approx 72$ ns using 564.6 $\gamma(t)$ (1998Bi06). 573.7 2 0.9.3 1850.5 1276.8 4^{+} 603.2 2 0.6 2 2414.4 $(5)^{-}$ 1811.2 5-E0+M1+E2 0.05 3 $\alpha(K)=0.039\ 24;\ \alpha(L)=0.008\ 4;\ \alpha(M)=0.0018$ 8; α (N+..)=0.00057 24 $\alpha(N)=0.00046\ 20;\ \alpha(O)=0.00010\ 5;$ $\alpha(P) = 1.2 \times 10^{-5} 6$ Mult.: α (K)exp=0.15 4, α (L)exp=0.08 3. $\alpha(K)=0.039 \ 24; \ \alpha(L)=0.007 \ 4; \ \alpha(M)=0.0018$ 606.3 2 114 1883.1 $(3,4,5)^+$ 1276.8 4^{+} M1+E20.05 3 8; α(N+..)=0.00057 24 $\alpha(N)=0.00046\ 19;\ \alpha(O)=9.E-5\ 4;$ $\alpha(P) = 1.2 \times 10^{-5} 6$ α(N)=0.000649 9; α(O)=0.0001358 19; $\alpha(P)=1.758\times10^{-5}$ 25 Mult.: $\alpha(K) \exp = 0.06 2$. 0.0203 610.9 2 84 8 1276.8 4^{+} 665.90 2+ E2 $\alpha(K)=0.01479\ 21;\ \alpha(L)=0.00413\ 6;$ α (M)=0.001022 *15*; α (N+..)=0.000321 *5* α (N)=0.000263 4; α (O)=5.29×10⁻⁵ 8; $\alpha(P) = 6.02 \times 10^{-6} \ 9$ α (N)=0.000262 4; α (O)=5.28×10⁻⁵ 8; $\alpha(P) = 6.01 \times 10^{-6} 9$ Mult.: α (L)exp=0.00418; Other: α (K)exp in 1992Hu04. 650.8 2 1.2 2 2462.0 $(4,5,6)^{-}$ 1811.2 5-M1+E2 0.041 23 α(K)=0.032 20; α(L)=0.006 3; α(M)=0.0015 7; α(N+..)=0.00047 20 α (N)=0.00038 16; α (O)=8.E-5 4; $\alpha(P)=1.0\times10^{-5}$ 5 Mult.: $\alpha(K) \exp = 0.033$ 7. 0^{+} $\alpha(K)=0.01250$ 18; $\alpha(L)=0.00325$ 5; 665.9 2 665.90 2^{+} 0 E2 0.01679 100 $\alpha(M)=0.000800$ 12; $\alpha(N+..)=0.000252$ 4 $\alpha(N)=0.000205 \ 3; \ \alpha(O)=4.15\times10^{-5} \ 6;$ $\alpha(P) = 4.79 \times 10^{-6}$ 7 Mult.: α (K)exp=0.0126, α (L)exp=0.00329; Other: $\alpha(K)$ exp in 1992Hu04. 700.3 2 2461.6 $(5,6,7)^+$ 1761.3 6^{+} M1 0.0524 $\alpha(K)=0.0428$ 6; $\alpha(L)=0.00732$ 11; 1.06 α(M)=0.001720 25; α(N+..)=0.000547 8 α (N)=0.000443 7; α (O)=9.27×10⁻⁵ 13; $\alpha(P)=1.200\times10^{-5}$ 17 Mult.: $\alpha(K) \exp = 0.09 5$. 726.4 2 1.4 2 1392.30 2^{+} 665.90 2+ E0+M1+E2 0.031 17 $\alpha(K)=0.025 \ 15; \ \alpha(L)=0.0046 \ 21;$ $\alpha(M)=0.0011$ 5; $\alpha(N+..)=0.00035$ 15 α (N)=0.00028 12; α (O)=6.E-5 3; α (P)=7.E-6 4 Mult.: α (K)exp=0.11 3. 808.7 7 *α*(K)=0.00862 *13*; *α*(L)=0.00196 *3*; 2085.5 1276.8 4+ E2 0.01120 2.94 $(2,6)^+$

Continued on next page (footnotes at end of table)

²⁰⁰At ε decay (43 s+47 s) 1998Bi06,1992Hu04 (continued) γ ⁽²⁰⁰Po) (continued) $I_{\gamma}^{\dagger @}$ α**&** Mult.[‡] Eγ[†] E_i(level) J_i^{π} \mathbf{E}_{f} \mathbf{J}_{f}^{π} Comments α(M)=0.000476 7; α(N+..)=0.0001501 22 $\alpha(N)=0.0001222$ 18; $\alpha(O)=2.49\times10^{-5}$ 4; $\alpha(P)=2.96\times10^{-6}$ 5 Mult.: $\alpha(K) \exp = 0.009 2$. $\alpha(K)=0.012$ 6; $\alpha(L)=0.0021$ 9; $\alpha(M)=0.00050$ 21; 986.1 2 3.0 6 1652.0 $(1,2,3)^+$ 665.90 2+ M1+E2 0.015 7 α(N+..)=0.00016 7 $\alpha(N)=0.00013$ 6; $\alpha(O)=2.7\times10^{-5}$ 12; $\alpha(P)=3.4\times10^{-6}$ 16 Mult.: $\alpha(K) \exp = 0.011 \ 3$. 665.90 2+ 1110.3 2 1.1 2 1776.2 1136.50 0^{+} 0^{+} E0 Mult.: $\alpha(K) \exp >0.08$. 1136.5 2 0 $\alpha(N)=3.48\times10^{-5}$ 5; $\alpha(O)=7.21\times10^{-6}$ 10; 1392.3 2 1392.30 2^{+} 0 0^{+} 0.00397 1.2 4 [E2] $\alpha(P) = 9.04 \times 10^{-7} 13$ $\alpha(N)=3.48\times10^{-5}$ 5; $\alpha(O)=7.21\times10^{-6}$ 10; $\alpha(P) = 9.04 \times 10^{-7} I3$

[†] From 1998Bi06, unless otherwise specified. I γ are a mixture of the ²⁰⁰At g.s. (J^{π}=(3⁺)) and ²⁰⁰At isomer (J^{π}=(7⁺)) ε decay intensities and hence no unambiguous normalization of the decay scheme can be achieved.

[‡] From $\alpha(K)$ exp and $\alpha(L)$ exp in 1998Bi06.

[#] From adopted gammas.

[@] For absolute intensity per 100 decays, multiply by 0.43 6.

[&] Total theoretical internal conversion coefficients, calculated using the BrIcc code (2008Ki07) with Frozen orbital approximation based on γ-ray energies, assigned multipolarities, and mixing ratios, unless otherwise specified.

²⁰⁰At ε decay (43 s+47 s) 1998Bi06,1992Hu04

