²⁰⁰At ε decay (43.1 s+47 s) **1998Bi06,1992Hu04**

		History	
Туре	Author	Citation	Literature Cutoff Date
Full Evaluation	F. G. Kondev	NDS 192,1 (2023)	1-Aug-2023

Parent: ²⁰⁰At: E=0; J^{π}=(3⁺); T_{1/2}=43.1 s 8; Q(ϵ)=7954 26; % ϵ +% β ⁺ decay=48 4

Parent: ²⁰⁰At: E=112.9 29; $J^{\pi} = (7^+)$; $T_{1/2} = 47$ s 1; $Q(\varepsilon) = 7954$ 26; $\%\varepsilon + \%\beta^+$ decay=57 7

1998Bi06: mass separated source produced using nat $Re(^{20}Ne,xn\gamma)$ reaction at $E(^{20}Ne)=200$ MeV; Detectors: HPGE, LEPS,

Si(Li); Measured: $E\gamma$, $I\gamma$, ce, γ , x and ce singles, $\gamma\gamma(t)$, $\gamma X(t)$, $\gamma ce(t)$ and $Xce(\gamma)$. Other: 1995Bi17.

1992Hu04: mass separated source produced using nat $\text{Re}(^{20}\text{Ne,xn}\gamma)$ reaction; Detectors: Ge(Li), Si(Li), surface barrier detectors; Measured: E γ , I γ , ce, E α , I α , γ -ray singles.

The data of 1998Bi06 and 1992Hu04 are consistent with each other, except that the level reported at 1842 keV in 1992Hu04 was not confirmed in 1998Bi06.

The decay data for the ground state and the isomer cannot be separated, and no log ft values and absolute γ -ray emission probabilities are reported.

²⁰⁰Po Levels

E(level) [†]	$J^{\pi \ddagger}$	T _{1/2}	Comments
0	0^{+}	11.54 min 9	T _{1/2} : From Adopted Levels.
665.90 17	2+	2.01 ps 11	$T_{1/2}$: From Adopted Levels.
1136.50 20	0^{+}	-	
1276.8 <i>3</i>	4+		
1392.30 17	2+		
1652.0 <i>3</i>	$(1,2,3)^+$		
1761.3 <i>3</i>	6+		
1772.9 4	$(3,4,5)^+$		
1773.6 4	8+	61 ns <i>3</i>	$T_{1/2}$: From Adopted Levels.
1776.2 <i>3</i>			
1791.4 4			
1811.2 <i>3</i>	5-		
1850.5 4			
1883.1 4	$(3,4,5)^+$		
2085.5 8	$(6)^+$		J^{π} : From Adopted Levels.
2135.1 4	7^{-}		
2220.5 4	$(4,5,6)^{-}$		
2261.2 4	9-	<2 ns	$T_{1/2}$: From Adopted Levels.
2329.7 5			
2337.5 4	$(7,8,9)^+$		
2360.5 5			
2414.4 4	(5) ⁻		
2461.6 4	$(5,6,7)^+$		
2462.0 4	(4,5,6) ⁻		

[†] From least-squares fit to $E\gamma$.

[‡] From 1998Bi06 (same as in Adopted Levels), unless otherwise stated.

E_{γ}^{\dagger}	I_{γ}^{\dagger}	E _i (level)	\mathbf{J}_i^{π}	$\mathbf{E}_f \mathbf{J}_f^{\pi}$	Mult. [‡]	<i>α</i> ^{&}	Comments
(12.3 3)		1773.6	8+	1761.3 6+	[E2]	4.9×10 ⁴ 9	α (M)=3.7×10 ⁴ 7 α (N)=9.5×10 ³ 17; α (O)=1.80×10 ³ 32; α (P)=156 28 E_{γ} : From adopted gammas.
125.7 3	0.3 2	2261.2	9-	2135.1 7-	E2 [@]	2.77 5	α (K)=0.391 6; α (L)=1.761 31; α (M)=0.470 8 α (N)=0.1203 21; α (O)=0.0229 4; α (P)=0.00208 4 E_{γ} , I_{γ} : From adopted gammas.

 $\gamma(^{200}\text{Po})$

Continued on next page (footnotes at end of table)

$^{200}{\rm At}\,\varepsilon$ decay (43.1 s+47 s) 1998Bi06,1992Hu04 (continued)

$\gamma(^{200}\text{Po})$ (continued)

E_{γ}^{\dagger}	I_{γ}^{\dagger}	E _i (level)	\mathbf{J}_i^{π}	$E_f J_f^{\pi}$	Mult. [‡]	a&	Comments
^x 264.8 [#] 2 323.8 2	0.6 [#] 1 2.4 6	2135.1	7-	1811.2 5-	E2	0.1007 14	$\begin{aligned} &\alpha(\mathbf{K}) = 0.0564 \ 8; \ \alpha(\mathbf{L}) = 0.0330 \ 5; \\ &\alpha(\mathbf{M}) = 0.00854 \ 12 \\ &\alpha(\mathbf{N}) = 0.002193 \ 31; \ \alpha(\mathbf{O}) = 0.000429 \ 6; \\ &\alpha(\mathbf{P}) = 4.34 \times 10^{-5} \ 6 \\ &\text{Mult.:} \ &\alpha(\mathbf{K}) \exp[=0.23 \ 6, \ \alpha(\mathbf{L}) \exp[=0.047 \ 6] \end{aligned}$
361.5 2	0.7 2	2135.1	7-	1773.6 8+	(E1) [@]	0.02057 29	13. $\alpha(K)=0.01683\ 24;\ \alpha(L)=0.00286\ 4;\ \alpha(M)=0.000671\ 9$ $\alpha(N)=0.0001713\ 24;\ \alpha(O)=3.52\times10^{-5}\ 5;$
373.8 2	7.1 7	2135.1	7-	1761.3 6+	E1	0.01911 27	$\alpha(P)=4.30 \times 10^{-6} 6$ $\alpha(K)=0.01564 22; \ \alpha(L)=0.00265 4;$ $\alpha(M)=0.000621 9$ $\alpha(N)=0.0001586 22; \ \alpha(O)=3.26 \times 10^{-5} 5;$ $\alpha(P)=3.00 \times 10^{-6} 6$
409.3 2	2.5 4	2220.5	(4,5,6) ⁻	1811.2 5-	M1+E2	0.14 8	$\begin{array}{l} \alpha(\mathbf{r}) = 5.99 \times 10^{-0.000} \\ \text{Mult.: } \alpha(\mathbf{K}) \exp < 0.09. \\ \alpha(\mathbf{K}) = 0.11 \ 7; \ \alpha(\mathbf{L}) = 0.023 \ 8; \\ \alpha(\mathbf{M}) = 0.0054 \ 18 \\ \alpha(\mathbf{N}) = 0.0014 \ 5; \ \alpha(\mathbf{O}) = 2.9 \times 10^{-4} \ 10; \end{array}$
484.4 2	48 4	1761.3	6+	1276.8 4+	E2	0.0346 5	$\alpha(P)=3.5\times10^{-5} I5$ Mult.: $\alpha(K)\exp=0.15 5$. $\alpha(K)=0.02365 33; \alpha(L)=0.00826 I2;$ $\alpha(M)=0.002081 29$ $\alpha(N)=0.000534 8; \alpha(O)=0.0001065 I5;$ $\alpha(D)=1.162\times10^{-5} I6$
488.4 2	1.8 6	2261.2	9-	1773.6 8+	(E1) [@]	0.01078 <i>15</i>	$\alpha(\mathbf{F}) = 1.102 \times 10^{-176}$ Mult.: $\alpha(\mathbf{K}) \exp[=0.0239, \alpha(\mathbf{L}) \exp[=0.00838, \alpha(\mathbf{K}) = 0.00887, 12; \alpha(\mathbf{L}) = 0.001460, 20; \alpha(\mathbf{M}) = 0.000342, 5$ $\alpha(\mathbf{N}) = 0.000342, 5$ $\alpha(\mathbf{N}) = 0.00342, 10^{-5}, 12; \alpha(\mathbf{O}) = 1.802 \times 10^{-5}$
496.3 2	2.2 6	1772.9	(3,4,5)+	1276.8 4+	M1(+E2)	0.08 5	25; $\alpha(P)=2.236\times10^{-6}$ 31 $\alpha(K)=0.06$ 4; $\alpha(L)=0.013$ 5; $\alpha(M)=0.0031$ 12 $\alpha(N)=8.0\times10^{-4}$ 31; $\alpha(O)=1.7\times10^{-4}$ 7; $\alpha(P)=2.0\times10^{-5}$ 10
514.6 2	4.5 6	1791.4		1276.8 4+			Mult.: $\alpha(K)$ exp=0.11 4.
518.5 <i>3</i> 534.3 2	1.5 <i>4</i> 16 <i>3</i>	2329.7 1811.2	5-	1811.2 5 ⁻ 1276.8 4 ⁺	E1	0.00896 <i>13</i>	$\alpha(K)=0.00738 \ 10; \ \alpha(L)=0.001206 \ 17; \ \alpha(M)=0.000282 \ 4 \ \alpha(N)=7.20\times10^{-5} \ 10; \ \alpha(O)=1.488\times10^{-5} \ 21; \ \alpha(P)=1.855\times10^{-6} \ 26 \ Mult.: \ \alpha(K)exp=0.0075 \ 14; \ Other: \ \alpha(K)exp \ in \ 1992Hu04.$
549.3 <i>3</i> 564.6 <i>2</i>	0.7 <i>3</i> 13 <i>3</i>	2360.5 2337.5	(7,8,9)+	1811.2 5 ⁻ 1773.6 8 ⁺	M1	0.0924 <i>13</i>	α(K)=0.0754 11; α(L)=0.01296 18; α(M)=0.00305 4 α(N)=0.000784 11; α(O)=0.0001642 23; α(P)=2.126×10-5 30 Mult.: α(K)exp=0.09 2, α(L)exp=0.014 3; Other: α(K)exp in 1992Hu04. Eγ: This transition is observed to be delayed with T1/2 ≈72 ns using 564 6γ(t) (1998Bi06)
573.7 2	0.9 3	1850.5		1276.8 4+			JUT.UY(I) (1370D100).

Continued on next page (footnotes at end of table)

²⁰⁰₈₄Po₁₁₆-3

			200 At ε decay (43.1 s+47 s) 1998Bi06,1992Hu04 (continued)						
γ ⁽²⁰⁰ Po) (continued)									
E_{γ}^{\dagger}	I_{γ}^{\dagger}	E _i (level)	J^{π}_i	E_f	\mathbf{J}_f^{π}	Mult. [‡]	α &	Comments	
603.2 2	0.6 2	2414.4	(5) ⁻	1811.2	5-	E0+M1+E2		Mult.: $\alpha(K) \exp = 0.15 4$,	
606.3 2	1.1 4	1883.1	(3,4,5)+	1276.8	4+	M1+E2	0.049 28	$\alpha(L)\exp=0.08 \ 3.$ $\alpha(K)=0.039 \ 24; \ \alpha(L)=0.0075 \ 33;$ $\alpha(M)=0.0018 \ 7$ $\alpha(N)=4.6\times10^{-4} \ 19; \ \alpha(O)=9.E-5 \ 4;$ $\alpha(P)=1.2\times10^{-5} \ 6$	
610.9 2	84 8	1276.8	4+	665.90	2+	E2	0.02027 28	Mult.: $\alpha(K)\exp=0.06 \ 2.$ $\alpha(K)=0.01480 \ 21; \ \alpha(L)=0.00413 \ 6;$ $\alpha(M)=0.001022 \ 14$ $\alpha(N)=0.000263 \ 4; \ \alpha(O)=5.29\times10^{-5}$ $7; \ \alpha(P)=6.02\times10^{-6} \ 8$ Mult.: $\alpha(L)\exp=0.00418;$ Other:	
650.8 2	1.2 2	2462.0	(4,5,6)-	1811.2	5-	M1+E2	0.041 23	α (K)exp in 1992Hu04. α (K)=0.032 <i>19</i> ; α (L)=0.0062 <i>27</i> ; α (M)=0.0015 <i>6</i> α (N)=3.8×10 ⁻⁴ <i>16</i> ; α (O)=7.8×10 ⁻⁵ <i>34</i> ; α (P)=1.0×10 ⁻⁵ <i>5</i> Mult.: α (K)exp=0.033 <i>7</i> .	
x659.6 [#] 3 665.9 2	0.3 [#] 1 100	665.90	2+	0	0+	E2	0.01680 24	$\alpha(K)=0.01250 \ 18; \ \alpha(L)=0.00325 \ 5; \\ \alpha(M)=0.000800 \ 11 \\ \alpha(N)=0.0002054 \ 29; \\ \alpha(O)=4.15\times10^{-5} \ 6; \\ \alpha(P)=4.79\times10^{-6} \ 7 \\ Mult.: \ \alpha(K)exp=0.0126, \\ \alpha(L)exp=0.00329; \ Other: \ \alpha(K)exp \\ \alpha(L)exp=0.00329; \ Other: \ \alpha(K)exp \\ \alpha(L)exp=0.00329; \ Other: \ \alpha(K)exp \\ \alpha(L)exp=0.00329; \ Other: \ \alpha(L)exp \\ \alpha(L)exp=0.00329; \ \alpha(L)e$	
700.3 2	1.0 6	2461.6	(5,6,7)+	1761.3	6+	M1	0.0524 7	in 1992Hu04. $\alpha(K)=0.0429 \ 6; \ \alpha(L)=0.00732 \ 10;$ $\alpha(M)=0.001721 \ 24$ $\alpha(N)=0.000443 \ 6; \ \alpha(O)=9.27\times10^{-5} \ 13; \ \alpha(P)=1.201\times10^{-5} \ 17$ Mult : $\alpha(K)=n=0.09 \ 5$	
726.4 2 808.7 7	1.4 2 2.9 4	1392.30 2085.5	2 ⁺ (6) ⁺	665.90 1276.8	2+ 4+	E0+M1+E2 E2	0.01120 <i>16</i>	Mult.: $\alpha(K) \exp[=0.075]$ Mult.: $\alpha(K) \exp[=0.11] 3$. $\alpha(K) = 0.00862 \ 12; \ \alpha(L) = 0.001957$ $28; \ \alpha(M) = 0.0001222 \ 17;$ $\alpha(O) = 2.492 \times 10^{-5} \ 35;$ $\alpha(P) = 2.96 \times 10^{-6} \ 4$ Mult.: $\alpha(K) \exp[=0.000, 2]$	
986.1 2	3.0 6	1652.0	(1,2,3)+	665.90	2+	M1+E2	0.015 7	Mult.: $\alpha(K)\exp=0.009~2$. $\alpha(K)=0.012~6; ~\alpha(L)=0.0021~9;$ $\alpha(M)=5.0\times10^{-4}~20$ $\alpha(N)=1.3\times10^{-4}~5; ~\alpha(O)=2.7\times10^{-5}$ $11; ~\alpha(P)=3.4\times10^{-6}~15$ Mult.: $\alpha(K)\exp=0.011~3$.	
1110.3 2 (1136.5 2)	1.1 2	1776.2 1136.50	0+	665.90 0	2+ 0+	E0		E _γ : No γ ray was observed. The energy determined from the observed ce-K line in 1998Bi06. Mult.: α (K)exp>0.08.	
11//.1" 5 1392.3 2	1.4" 2 1.2 4	1392.30	2+	0	0+	[E2]	0.00397 6	$\begin{array}{l} \alpha({\rm K}){=}0.00318 \ 4; \ \alpha({\rm L}){=}0.000572 \ 8; \\ \alpha({\rm M}){=}0.0001355 \ 19 \\ \alpha({\rm N}){=}3.48{\times}10^{-5} \ 5; \end{array}$	

Continued on next page (footnotes at end of table)

From ENSDF

²⁰⁰At ε decay (43.1 s+47 s) 1998Bi06,1992Hu04 (continued)

$\gamma(^{200}\text{Po})$ (continued)

Comments

 E_{γ}^{\dagger} E_i(level)

 $\alpha(O) = 7.21 \times 10^{-6} \ 10; \ \alpha(P) = 9.04 \times 10^{-7} \ 13; \ \alpha(IPF) = 3.32 \times 10^{-5} \ 5$

[†] From 1998Bi06, unless otherwise stated. I γ are a mixture of the ²⁰⁰At g.s. ($J^{\pi}=(3^+)$) and ²⁰⁰At isomer ($J^{\pi}=(7^+)$) ε decay intensities and, hence, no unambiguous normalization of the decay scheme can be achieved.

[#] From 1992Hu04, but not reported in 1998Bi06.

[@] From adopted gammas.

[&] Additional information 1. ^x γ ray not placed in level scheme.

[±] From α (K)exp and α (L)exp in 1998Bi06.

²⁰⁰At ε decay (43.1 s+47 s) 1998Bi06,1992Hu04

