194 Pt(12 C,6n γ) 1985We05

		History	
Туре	Author	Citation	Literature Cutoff Date
Full Evaluation	F. G. Kondev	NDS 192,1 (2023)	1-Aug-2023

 $E(^{12}C)=102$ and 106 MeV; Target: ¹⁹⁴Pt, 10 mg/cm² thick; Detectors: Ge(Li) and two liquid scin neutron detectors; Measured: γ singles (at 102 and 106 MeV) $\gamma\gamma(t)$, $\gamma(t)$, $\gamma(\theta)$, $\gamma n \operatorname{coin}$, $\gamma\gamma n \operatorname{coin}$, $E\gamma$, $I\gamma$; Deduced: $T_{1/2}$, level scheme.

²⁰⁰Po Levels

E(level) [†]	$J^{\pi \ddagger}$	$T_{1/2}^{\ddagger}$	Comments
0	0^{+}	11.54 min 9	T _{1/2} : From Adopted Levels.
666.0 5	2+		·/- ·
1277.2 7	4+		
1762.0 9	6+		
1774.3 [#] 10	8+	90 ns 15	T _{1/2} : From 484.8 γ (t) in 1985We05 and by taking into account contributions from T _{1/2} =120 ns 20 (J^{π} =11 ⁻) and 267 ns 4 (J^{π} =12 ⁺) isomers.
1812.1 9	5-		
2136.3 ^a 10	7-		
2237.0 14	8-		
2262.3 ^a 11	9-	<2 ns	
2597.2 [@] 11	11-	120 ns 20	T _{1/2} : From 335.2 γ (t) in 1985We05 and by taking into account the contribution from the 267 ns 4 (J^{π} =12 ⁺) isomer.
2805.6 ^{&} 12	12^{+}	267 ns 4	$T_{1/2}$: From 208.4 γ (t) in 1985We05.
2808.1 15	10		
2963.5 12	11-		
3231.0 18	11		
3372.8 13	14^{+}		
3504.2 13	13-		
3627.8 15	(14 ⁻)	<2 ns	
3691.3 15	(15 ⁻)	<2 ns	
3945.7 14	16+		
4126.8 16	16		
4173.6 18	(16)		
4447.6 17	17		
46/0.5 17	17		
4703.020 5227.120	18		

[†] From a least squares fit to $E\gamma$. [‡] From 1985We05, unless otherwise stated. [#] Configuration= $\pi(h_{9/2}^{+2})_{8+}$. [@] Admixture between configuration= $\pi(h_{9/2}^{+1}, i_{13/2}^{+1})_{11-}$ and configuration= $\pi(h_{9/2}^{+2})_{8+} \otimes 3^{-}$.

[&] Configuration= $\nu(i_{13/2}^{-2})_{12+}$.

^{*a*} Configuration= $\nu(f_{5/2}^{-1}, i_{13/2}^{-1})$.

$\gamma(^{200}\text{Po})$

E_{γ}^{\dagger}	I_{γ}^{\dagger}	E _i (level)	\mathbf{J}_i^{π}	$E_f J_f^{\pi}$	Mult.‡	α #	Comments
(12.3 3) (63 5)		1774.3 3691 3	$\frac{8^{+}}{(15^{-})}$	$1762.0 6^+$ 3627.8 (14^-)			E_{γ} : From adopted gammas.
100.7 10	≈1.5	2237.0	8-	2136.3 7-	M1	10.87 <i>34</i>	$\alpha(K)=8.80\ 28;\ \alpha(L)=1.58\ 5;\ \alpha(M)=0.372\ 12$ $\alpha(N)=0.0959\ 31;\ \alpha(O)=0.0201\ 7;\ \alpha(P)=0.00259\ 8$ Mult.: E1 multipolarity is excluded based on the relative intensity of 100.7γ .

Continued on next page (footnotes at end of table)

¹⁹⁴Pt(¹²C,6nγ) **1985We05** (continued)

$\gamma(^{200}\text{Po})$ (continued)

E_{γ}^{\dagger}	I_{γ}^{\dagger}	E _i (level)	\mathbf{J}_i^{π}	E_f	\mathbf{J}_f^{π}	Mult. [‡]	α #	Comments
123.6 <i>10</i> 187.1 <i>10</i>	3 <i>1</i> 4 <i>1</i>	3627.8 3691.3	(14 ⁻) (15 ⁻)	3504.2 3504.2	13 ⁻ 13 ⁻	D (E2)	0.598 14	Mult.: $A_2 = -0.31$ 7, $A_4 = 0.03$ 9. $\alpha(K) = 0.1926$ 35; $\alpha(L) = 0.301$ 8; $\alpha(M) = 0.0797$ 22 $\alpha(N) = 0.0204$ 6; $\alpha(O) = 0.00392$ 11; $\alpha(P) = 0.000367$ 10
208.4 5	36 <i>1</i>	2805.6	12+	2597.2	11-	E1	0.0742 11	Mult.: $A_2=0.2 \ 3, \ A_4=-0.2 \ 4.$ $\alpha(K)=0.0600 \ 9; \ \alpha(L)=0.01087 \ 17; \ \alpha(M)=0.00256$ 4 $\alpha(K)=0.000(52 \ 10. \ c(Q)) \ 0.0001224 \ 20;$
255.4 10	3 1	4703.0	18	4447.6	17	D		α (N)=0.000553 <i>10</i> ; α (O)=0.0001324 <i>20</i> ; α (P)=1.561×10 ⁻⁵ <i>24</i> Mult.: A ₂ =0.05 <i>4</i> , A ₄ =-0.02 <i>6</i> . Mult.: A ₂ =-0.2 <i>3</i> , A ₄ =-0.2 <i>4</i> .
324.3 10	3 1	2136.3	7-	1812.1	5-	E2	0.1002 17	$\alpha(K)=0.0562 \; 9; \; \alpha(L)=0.0328 \; 6; \; \alpha(M)=0.00849 \; 16$ $\alpha(N)=0.00218 \; 4; \; \alpha(O)=0.000427 \; 8;$ $\alpha(P)=4.32 \times 10^{-5} \; 8$
335.2 5	12 <i>I</i>	2597.2	11-	2262.3	9-	E2	0.0911 <i>13</i>	Mult.: $A_2=0.9$ 3, $A_4=0.2$ 3. $\alpha(K)=0.0522$ 8; $\alpha(L)=0.0291$ 4; $\alpha(M)=0.00750$ 11 $\alpha(N)=0.001926$ 29; $\alpha(O)=0.000377$ 6; $\alpha(P)=3.84\times10^{-5}$ 6
374.3 5	20 1	2136.3	7-	1762.0	6+	E1	0.01905 27	Mult.: A ₂ =0.19 <i>10</i> , A ₄ =0.04 <i>13</i> . α (K)=0.01560 22; α (L)=0.00264 4; α (M)=0.000619 9 α (N)=0.0001581 23; α (O)=3.25×10 ⁻⁵ 5;
						_		$\alpha(P)=3.97\times10^{-6} 6$ Mult.: A ₂ =-0.01 5, A ₄ =0.01 6.
422.9 10	4 1	3231.0	11	2808.1	10	D		Mult.: $A_2 = -0.4 2$, $A_4 = -0.1 3$.
482.3 10 484.8 5	10 2 75 1	4173.6 1762.0	(10) 6 ⁺	1277.2	(15) 4 ⁺	E2	0.0346 5	Mult.: $A_2 = -0.0770$, $A_4 = -0.0174$. $\alpha(K) = 0.0236133$; $\alpha(L) = 0.0082412$; $\alpha(M) = 0.00207630$ $\alpha(N) = 0.0005338$; $\alpha(O) = 0.000106215$; $\alpha(P) = 1.159 \times 10^{-5}17$
488.2 5	16 <i>1</i>	2262.3	9-	1774.3	8+	E1	0.01079 15	Mult.: A ₂ =0.225 <i>15</i> , A ₄ =-0.01 <i>2</i> . α (K)=0.00888 <i>13</i> ; α (L)=0.001462 <i>21</i> ; α (M)=0.000342 <i>5</i> α (N)=8 74×10 ⁻⁵ <i>12</i> ; α (Q)=1 803×10 ⁻⁵ 26;
								$\alpha(P)=2.238 \times 10^{-6} 32$ Mult.: A ₂ =-0.05 3, A ₄ =-0.05 4.
501.9 10	6 1	4447.6	17	3945.7	16+	D		$\alpha(K)=0.06 4; \alpha(L)=0.013 6; \alpha(M)=0.0030 12; \alpha(N+)=0.0010 4$ $\alpha(N)=0.0008 3; \alpha(O)=0.00016 7; \alpha(P)=2.0\times10^{-5}$
								$\begin{array}{c} \text{Mult.: } A_2 = -0.60 \ 14, \ A_4 = -0.19 \ 19. \end{array}$
534.9 5	10 1	1812.1	5-	1277.2	4+	E1	0.00894 13	$\alpha(K)=0.00737 \ 10; \ \alpha(L)=0.001203 \ 17; \ \alpha(M)=0.000281 \ 4 \ \alpha(N)=7 \ 10\times10^{-5} \ 10; \ \alpha(O)=1 \ 485\times10^{-5} \ 21;$
								$\alpha(N) = 7.19 \times 10^{-1} 10, \ \alpha(O) = 1.485 \times 10^{-2} 21, \ \alpha(P) = 1.851 \times 10^{-6} 26$ Mult: A ₂ =-0.07 3, A ₄ =-0.11 4
540.7 5	14 <i>1</i>	3504.2	13-	2963.5	11-	E2	0.0267 4	$\alpha(K)=0.01888\ 27;\ \alpha(L)=0.00589\ 8;\ \alpha(M)=0.001472\ 21$
								$\alpha(N)=0.000378 5; \alpha(O)=7.57\times10^{-5} 11; \alpha(P)=8.43\times10^{-6} 12 Mult: A_2=0.12 3 A_4=-0.11 4$
545.8 10	61	2808.1	10	2262.3	9-	D		Mult.: $A_2 = -0.2 3$, $A_4 = -0.2 4$.
556.6 <i>10</i> 567.2 5	4 <i>I</i> 31 <i>I</i>	3227.1 3372.8	14+	4670.5 2805.6	17 12 ⁺	E2	0.02393 34	$\alpha(K)=0.01715 24; \alpha(L)=0.00511 7;$

Continued on next page (footnotes at end of table)

194 **Pt**(12 **C,6n** γ) 1985We05 (continued)

γ ⁽²⁰⁰Po) (continued)</sup>

E_{γ}^{\dagger}	I_{γ}^{\dagger}	E _i (level)	\mathbf{J}_i^{π}	E_f	\mathbf{J}_f^{π}	Mult. [‡]	α #	Comments
572.9 5	17 <i>I</i>	3945.7	16+	3372.8	14+	E2	0.02340 <i>33</i>	$\begin{array}{c} \alpha(M)=0.001273 \ 18 \\ \alpha(N)=0.000327 \ 5; \ \alpha(O)=6.56\times10^{-5} \ 9; \\ \alpha(P)=7.37\times10^{-6} \ 10 \\ Mult.: \ A_2=0.40 \ 2, \ A_4=-0.09 \ 3. \\ \alpha(K)=0.01681 \ 24; \ \alpha(L)=0.00496 \ 7; \\ \alpha(M)=0.001235 \ 18 \\ \alpha(N)=0.000317 \ 5; \ \alpha(O)=6 \ 37\times10^{-5} \ 9; \end{array}$
611.2 5	100	1277.2	4+	666.0	2+	E2	0.02024 29	$\begin{aligned} &\alpha(P) = 7.17 \times 10^{-6} \ 10 \\ &\text{Mult.: } A_2 = 0.31 \ 15, \ A_4 = -0.3 \ 2. \\ &\alpha(K) = 0.01478 \ 21; \ \alpha(L) = 0.00412 \ 6; \\ &\alpha(M) = 0.001021 \ 14 \\ &\alpha(N) = 0.000262 \ 4; \ \alpha(O) = 5.28 \times 10^{-5} \ 7; \end{aligned}$
666.0 <i>5</i>	≈100	666.0	2+	0	0+	E2	0.01679 24	α (P)=6.01×10 ⁻⁶ 9 Mult.: A ₂ =0.173 9, A ₄ =-0.042 12. α (K)=0.01249 18; α (L)=0.00325 5; α (M)=0.000799 11 α (N)=0.0002053 29; α (O)=4.15×10 ⁻⁵ 6; (D) 4.70×10 ⁻⁶ 7
701.2 5	15 <i>I</i>	2963.5	11-	2262.3	9-	(E2)	0.01505 21	$\begin{array}{l} \alpha(\mathrm{P})=4.79\times10^{-6} \\ \text{Mult.:} \ A_{2}=0.221 \ 10, \ A_{4}=-0.010 \ 13. \\ \alpha(\mathrm{K})=0.01131 \ 16; \ \alpha(\mathrm{L})=0.00283 \ 4; \\ \alpha(\mathrm{M})=0.000693 \ 10 \\ \alpha(\mathrm{N})=0.0001781 \ 25; \ \alpha(\mathrm{O})=3.61\times10^{-5} \ 5; \end{array}$
724.8 <i>10</i> 754.0 <i>10</i> 822.6 <i>5</i>	9 1 3 1 34 1	4670.5 4126.8 2597.2	17 16 11	3945.7 3372.8 1774.3	16 ⁺ 14 ⁺ 8 ⁺	D (Q) E3	0.0275 4	$\begin{aligned} &\alpha(\mathrm{P})=4.20\times10^{-6}\ 6\\ &\mathrm{Mult.:}\ A_{2}=0.64\ 1I,\ A_{4}=-0.01\ 14.\\ &\mathrm{Mult.:}\ A_{2}=-0.06\ 14,\ A_{4}=-0.18\ 18.\\ &\mathrm{Mult.:}\ A_{2}=0.22\ 16,\ A_{4}=-0.3\ 2.\\ &\alpha(\mathrm{K})=0.01880\ 26;\ \alpha(\mathrm{L})=0.00653\ 9;\\ &\alpha(\mathrm{M})=0.001650\ 23\\ &\alpha(\mathrm{N})=0.000425\ 6;\ \alpha(\mathrm{O})=8.57\times10^{-5}\ 12;\\ &\alpha(\mathrm{P})=9.70\times10^{-6}\ 14\\ &\mathrm{Mult.:}\ A_{2}=0.28\ 8,\ A_{4}=0.1\ 1.\end{aligned}$

[†] From 1985We05 using $E(^{12}C)=106$ MeV data, unless otherwise stated. $\Delta E\gamma$ were estimated by the evaluator. [‡] From 1985We05 based on $\gamma(\theta)$ and intensity balances. [#] Additional information 1.

 $^{200}_{\ 84} \mathrm{Po}_{116}$