$^{200}\mathrm{Hg}(\alpha,\!4\mathrm{n}\gamma)$ 1987Fa15

		History	
Туре	Author	Citation	Literature Cutoff Date
Full Evaluation	F. G. Kondev	NDS 192,1 (2023)	1-Aug-2023

Beam: α particles at energy 41 and 53 MeV accelerated at Stockholm 225 cm cyclotron; Target: ¹⁹⁸Hg, placed between two mica foils; Detectors: intrinsic Ge and Ge(Li); Measured: γ , $\gamma\gamma$, $\gamma\gamma(\theta)$, $\gamma(t)$, $\gamma\gamma(t)$, g-factor; Deduced: J,T_{1/2}, level scheme.

²⁰⁰Pb Levels

E(level) [†]	$J^{\pi \ddagger}$	T _{1/2}	Comments
0	0^{+}		
1026.60 20	2+		
1488.8 <i>3</i>	4+		
1908.4 4	5-		A mixture of configuration= $v(f_{5(2)}^{-1}, i_{1,2(2)}^{-1})$ and configuration= $v(p_{2(2)}^{-1}, i_{1,2(2)}^{-1})$.
2153.5 4	7-	46 ns 1	$T_{1/2}$: From $\gamma(t)$ in 1987Fa15.
			A mixture of configuration= $\nu(f_{5/2}^{-1}, i_{13/2}^{-1})$, configuration= $\nu(p_{3/2}^{-1}, i_{13/2}^{-1})$ and configuration= $\nu(p_{1/2}^{-1}, i_{13/2}^{-1})$.
2183.0 11	9-	424 ns 10	$T_{1/2}$: From $\gamma(t)$ in 1987Fa15.
			Configuration= $v(f_{5(2)}^{-1}, i_{12(2)}^{-1})$.
2267.9 7			<i>S S S S S S S S S S</i>
2959.9 11	10^{+}		
3005.3 12	12+	202 ns 5	T _{1/2} : From 776.9 γ (t) in 1987Fa15. g=-0.1530 6 from 1987Fa15, using the time-differential perturbed angular distribution technique.
2100.0.12	11-		Configuration= $\nu(1_{13/2})$.
3180.9 12	11		
3395.1 13	(12)		
2866 6 12	(15^{+})		
3872 5 13	14		
4067 1 13	13^{13}		
4144 7 14	16+	5 ns /	$T_{1/2}$: From 278 1 $\gamma(t)$ and 861 3 $\gamma(t)$ in 1987Fa15
11111, 17	10	0 110 1	Configuration= $v(i^{-2}) \otimes 4^+$
4253.2.14	(15)		$(1_{13/2}) \otimes (1_{13/2}) \otimes (1_$
4341.7 15	16+		
5006.9 15	17-		Configuration= $\nu(f_{con}^{-1}, i_{con}^{-3})$.
5074.6 17	19-	67 ns 5	$T_{1/2}$: Recommended in 1987Fa15, based on weighted average of 62 ns 2 (278.1 γ (t)) and 71 ns 2 (861.3 γ (t)) in 1987Fa15. Other: 77 ns 10 from 665.2 γ (t) in 1987Fa15. $g=-0.094$ 7 from 1987Fa15, corrected for Knight shift, using the time-differential perturbed angular distribution technique.
51169 15	10		$\text{Configuration} = v(1_{5/2}, 1_{13/2}).$
5/35 3 20	(18^{-})		
5752 2 20	(10)		
5800.0 17	21-		

[†] From a least squares fit to $E\gamma$. [‡] From 1987Fa15.

					²⁰⁰ Hg((α ,4n γ)	1987Fa15 (con	tinued)
γ ⁽²⁰⁰ Pb)								
E_{γ}^{\dagger}	I_{γ}^{\ddagger}	E _i (level)	\mathbf{J}_i^{π}	\mathbf{E}_{f}	\mathbf{J}_f^{π}	Mult. [#]	α@	Comments
29.5 <i>10</i> 45.4 <i>4</i> 67.7 8		2183.0 3005.3 5074.6	9- 12 ⁺ 19 ⁻	2153.5 2959.9 5006.9	7 ⁻ 10 ⁺ 17 ⁻	E2	37.0 22	E _γ : From adopted gammas. E _γ : From adopted gammas. α (L)=27.5 <i>17</i> ; α (M)=7.3 <i>4</i> α (N)=1.83 <i>11</i> ; α (O)=0.325 <i>20</i> ; α (P)=0.0117 <i>7</i>
114.4 5	2.0	2267.9		2153.5	7-	M1,E2	5.0 14	E _{γ} ,Mult.: From adopted gammas. $\alpha(K)=2.8 \ 24; \ \alpha(L)=1.6 \ 7; \ \alpha(M)=0.41 \ 20$ $\alpha(N)=0.10 \ 5; \ \alpha(O)=0.019 \ 8; \ \alpha(P)=0.001132 \ 27$ Mult.: A ₂ =0.19 9; A ₄ =0.06 <i>13</i> .
139.9 5 196 9 5	1.9 ~2	5146.8 4341 7	18 16 ⁺	5006.9 4144 7	17 ⁻ 16 ⁺	D		Mult.: $A_2 = -0.46$ 7; $A_4 = -0.25$ 15.
214.2 <i>5</i> 245.1 2	~2 1.5 70	3395.1 2153.5	(12) 7 ⁻	3180.9 1908.4	10 11 ⁻ 5 ⁻	D E2	0.2164 <i>31</i>	Mult.: $A_2 = -0.38$ 6; $A_4 = 0.10$ 8. $\alpha(K) = 0.1046$ 15; $\alpha(L) = 0.0835$ 12; $\alpha(M) = 0.02166$ 31 $\alpha(N) = 0.00547$ 8; $\alpha(O) = 0.000997$ 14; $\alpha(P) = 5.51 \times 10^{-5}$ 8 Mult.: $A_2 = 0.34$ 2; $A_3 = 0.12$ 4
278.1 5	15	4144.7	16+	3866.6	14+	E2	0.1453 22	$\begin{aligned} \alpha(\text{K}) = 0.0777 \ 11; \ \alpha(\text{L}) = 0.0507 \ 8; \ \alpha(\text{M}) = 0.01306 \\ 21 \\ \alpha(\text{N}) = 0.00330 \ 5; \ \alpha(\text{O}) = 0.000605 \ 9; \\ \alpha(\text{P}) = 3.56 \times 10^{-5} \ 5 \\ \text{Mult.: } \text{A}_2 = 0.34 \ 2; \ \text{A}_4 = -0.11 \ 3. \end{aligned}$
x339.3 360.7 10	<1	5435.3	(18-)	5074.6	19-			
386.6 5 419.6 2	1.5 100	4253.2 1908.4	(15) 5 ⁻	3866.6 1488.8	14 ⁺ 4 ⁺	D E1	0.01389 <i>19</i>	Mult.: A ₂ =-0.32 8; A ₄ =-0.01 11. α (K)=0.01145 16; α (L)=0.001871 26; α (M)=0.000435 6 α (N)=0.0001099 15; α (O)=2.150×10 ⁻⁵ 30; α (P)=2.072×10 ⁻⁶ 29
462.2 2	100	1488.8	4+	1026.60	2+	E2	0.0356 5	Mult.: $A_2/A_4 = -0.23$ 2; $A_4 = -0.02$ 3. $\alpha(K) = 0.02456$ 34; $\alpha(L) = 0.00832$ 12; $\alpha(M) = 0.002078$ 29 $\alpha(N) = 0.000526$ 7; $\alpha(O) = 9.90 \times 10^{-5}$ 14; $\alpha(P) = 7.47 \times 10^{-6}$ 10 Mult.: $A_2 = 0.44$ 3; $A_4 = -0.20$ 4.
^x 579.3 665.2 5	3.5	5006.9	17-	4341.7	16+	E1	0.00537 8	$\alpha(K)=0.00446 \ 6; \ \alpha(L)=0.000700 \ 10; \\ \alpha(M)=0.0001620 \ 23 \\ \alpha(N)=4.10\times10^{-5} \ 6; \ \alpha(O)=8.08\times10^{-6} \ 11; \\ \alpha(P)=8.12\times10^{-7} \ 11$
677.6 10	0.8	5752.2	(20 ⁻)	5074.6	19-	(M1)	0.0486 7	Mult.: $A_{2}=-0.17 4$; $A_{4}=0.02 6$. $\alpha(K)=0.0399 6$; $\alpha(L)=0.00666 10$; $\alpha(M)=0.001555 23$ $\alpha(N)=0.000395 6$; $\alpha(O)=7.88\times10^{-5} 11$; $\alpha(P)=8.46\times10^{-6} 12$
725.4 5	2.0	5800.0	21-	5074.6	19-	E2	0.01274 18	Mult.: $A_2 < 0.$ $\alpha(K) = 0.00977 \ 14; \ \alpha(L) = 0.002256 \ 32;$ $\alpha(M) = 0.000547 \ 8$ $\alpha(N) = 0.0001385 \ 20; \ \alpha(O) = 2.67 \times 10^{-5} \ 4;$ $\alpha(P) = 2 \ 383 \times 10^{-6} \ 34$
776.9 2	54	2959.9	10+	2183.0	9-	E1	0.00399 6	Mult.: $A_2=0.29$ 6; $A_4=-0.08$ 7. $\alpha(K)=0.00332$ 5; $\alpha(L)=0.000514$ 7; $\alpha(M)=0.0001189$ 17 $\alpha(N)=3.01\times10^{-5}$ 4; $\alpha(O)=5.94\times10^{-6}$ 8;

Continued on next page (footnotes at end of table)

200 Hg(α ,4n γ) 1987Fa15 (continued)

γ (²⁰⁰Pb) (continued)

E_{γ}^{\dagger}	I_{γ}^{\ddagger}	E _i (level)	\mathbf{J}_i^{π}	E_f	\mathbf{J}_{f}^{π}	Mult. [#]	α [@]	Comments
823.7 5	≈2	3829.0	(13+)	3005.3	12+	(M1)	0.0293 4	$\alpha(P)=6.04\times10^{-7} 8$ Mult.: A ₂ =-0.20 2; A ₄ =-0.00 4. $\alpha(K)=0.02408 34$; $\alpha(L)=0.00399 6$; $\alpha(M)=0.000932 13$ $\alpha(N)=0.0002367 33$; $\alpha(Q)=4.72\times10^{-5} 7$;
861.3 5	20	3866.6	14+	3005.3	12+	E2	0.00895 13	$\begin{aligned} &\alpha(N) = 0.0002507 \ 55, \ \alpha(O) = 4.72 \times 10^{-7}, \\ &\alpha(P) = 5.08 \times 10^{-6} \ 7 \\ &\text{Mult.: } A_2 < 0. \\ &\alpha(K) = 0.00702 \ 10; \ \alpha(L) = 0.001467 \ 21; \\ &\alpha(M) = 0.000352 \ 5 \\ &\alpha(N) = 8.92 \times 10^{-5} \ 13; \ \alpha(O) = 1.732 \times 10^{-5} \ 24; \end{aligned}$
862.3 <i>5</i> 867.2 <i>5</i>	12 3.5	5006.9 3872.5	17 ⁻ 13 ⁺	4144.7 3005.3	16 ⁺ 12 ⁺	D M1+E2	0.017 8	$\alpha(P)=1.618\times10^{-6} 23$ Mult.: A ₂ =0.33 7; A ₄ =0.01 9. Mult.: A ₂ <0. $\alpha(K)=0.014$ 7; $\alpha(L)=0.0025$ 10; $\alpha(M)=5.8\times10^{-4}$
997.9 5	7.2	3180.9	11-	2183.0	9-	E2	0.00669 <i>9</i>	²⁵ $\alpha(N)=1.5\times10^{-4} 6; \alpha(O)=2.9\times10^{-5} 12;$ $\alpha(P)=3.0\times10^{-6} 14$ Mult.: A ₂ =-0.63 6; A ₄ =-0.02 13. $\alpha(K)=0.00533 7; \alpha(L)=0.001037 15;$
1026.6.2	100	1026 60	2+	0	0+	EO	0.00622.0	α (M)=0.0002470 35 α (N)=6.26×10 ⁻⁵ 9; α (O)=1.223×10 ⁻⁵ 17; α (P)=1.179×10 ⁻⁶ 17 Mult.: A ₂ =0.13 5; A ₄ =0.13 7. α (K)=0.00505 7; α (L)=0.000073 14;
1020.0 2	100	1020.00	2	0	0	Εz	0.00055 9	$\alpha(\text{N})=0.005057, \alpha(\text{L})=0.00097574, \alpha(\text{M})=0.000231232$ $\alpha(\text{N})=5.86\times10^{-5}8; \alpha(\text{O})=1.146\times10^{-5}16; \alpha(\text{P})=1.111\times10^{-6}16$ Mult.: A ₂ =0.302; A ₄ =0.013.
1061.8 <i>5</i>	3.5	4067.1	14+	3005.3	12+	E2	0.00593 8	$\begin{aligned} &\alpha(\mathbf{K}) = 0.00475 \ 7; \ \alpha(\mathbf{L}) = 0.000901 \ 13; \\ &\alpha(\mathbf{M}) = 0.0002140 \ 30 \\ &\alpha(\mathbf{N}) = 5.42 \times 10^{-5} \ 8; \ \alpha(\mathbf{O}) = 1.062 \times 10^{-5} \ 15; \\ &\alpha(\mathbf{P}) = 1.035 \times 10^{-6} \ 15 \\ &\text{Mult.: } \mathbf{A}_2 = 0.25 \ 5; \ \mathbf{A}_4 = -0.03 \ 6. \end{aligned}$

[†] From 1987Fa15, unless otherwise stated. $\Delta E \gamma$ was estimated by the evaluator. [‡] From 1987Fa15. $\Delta I \gamma'$ s were not reported by the authors. [#] From $\gamma(\theta)$ and the proposed J^{π} assignments in 1987Fa15. [@] Additional information 1. ^x γ ray not placed in level scheme.

 $^{200}_{\ 82} Pb_{118}$