¹⁹⁸Hg(α,2nγ) **1973Dj01,1978Mc03**

		History	
Туре	Author	Citation	Literature Cutoff Date
Full Evaluation	F. G. Kondev	NDS 192,1 (2023)	1-Aug-2023

1973Dj01: Beam: $E(\alpha)=40$ MeV from the Princeton Cyclotron Laboratory; Target: enriched to 95% in ¹⁹⁸Hg; Detectors: Ge(Li) and NaI(Tl); Measured: γ , $\gamma\gamma(t)$, $\gamma\gamma(\theta)$, I γ , $E\gamma$; Deduced: $T_{1/2}$, level scheme.

1978Mc03: Beam: $E(\alpha)=30$ MeV from the Crocker Nuclear Laboratory; Target ¹⁹⁸HgO enriched to 93% in ¹⁹⁸Hg; Detectors: solenoidal magnet, one Si(Li) detector; Measured: ce, γ , I γ , E γ , T_{1/2}.

Others: 1974Lu03, 1979Ma37, 1985St16.

²⁰⁰Pb Levels

E(level) [†]	$J^{\pi \ddagger}$	T _{1/2}	Comments
0	0^{+}		
1026.3 5	2+		
1488.3 7	4+		
1907.9 8	5-		
2152.9 9	7-	43 ns <i>3</i>	$T_{1/2}$: From γ (t) in 1974Lu03. Others: 40 ns 7 (1978Mc03) and 42 ns 4 (1985St16). g=-0.030 15 (1985St16) and Q=0.32 eb 2 (1979MaYQ) using the time-differential perturbed angular distribution technique.
2182.4 <i>14</i>	9-	480 ns 20	T _{1/2} : From γ(t) in 1974Lu03; Others: ≈0.5 μs (1973Dj01), 480 ns 60 (1978Mc03) and 445 ns 15 (1985St16). configuration: Pure ν($f_{5/2}^{-1}, i_{13/2}^{-1}$), from comparison between g(exp)=-0.0285 11 and g(th)=-0.025 8 in 1974Lu03. g=-0.0285 11 (1974Lu03. and -0.028 4 (1985St16); Q=0.40 eb 2 (1979MaYQ); the time differential parturbed angular distribution tachnique
2058 6 16	10^{+}		unerential perturbed angular distribution technique.
3004.0.16	12+	194 ns 6	$T_{1/2}$: from $\gamma(t)$ in 1979Ma37 Other: 180 ns 30 (1978Mc03)
5001.010	12	171 113 0	Q=0.79 eb 3 from 1979Ma37 normalized to $Q=0.51$ eb 2 in ²⁰⁶ Pb using the time-differential perturbed angular distribution technique.

 † From a least squares fit to Ey.

[‡] From 1978Mc03, based on the deduced γ -ray transition multipolarities.

$\gamma(^{200}\text{Pb})$

E_{γ}^{\dagger}	I_{γ}^{\dagger}	E _i (level)	\mathbf{J}_i^{π}	\mathbf{E}_{f}	\mathbf{J}_{f}^{π}	Mult. [‡]	α#	Comments
29.5 <i>10</i> 45.4 <i>4</i>		2182.4 3004.0	9 ⁻ 12 ⁺	2152.9 2958.6	7^{-} 10 ⁺			E_{γ} : From adopted gammas. E_{γ} : From adopted gammas; ≤ 50 keV in 1978Mc03.
^x 184.5 3	13.6							
245.0 4	72.5	2152.9	7-	1907.9	5-	E2	0.2166 32	$\alpha(K)=0.1047 \ 15; \ \alpha(L)=0.0837 \ 13; \ \alpha(M)=0.02170$ 34 $\alpha(N)=0.00548 \ 9; \ \alpha(O)=0.000999 \ 15;$ $\alpha(P)=5.52\times10^{-5} \ 8$ Mult.: $\alpha(K)\exp=0.107 \ 14, \ \alpha(L)\exp=0.084 \ 11$ and $\alpha(M)\exp=0.021 \ 4.$
x300.7 5								
^x 324.9 <i>10</i> 419.6 <i>4</i>	7.7	1907.9	5-	1488.3	4+	E1	0.01389 20	α (K)=0.01145 <i>16</i> ; α (L)=0.001871 <i>27</i> ; α (M)=0.000435 <i>6</i>
462.0 <i>4</i>	81.5	1488.3	4+	1026.3	2 ⁺	E2	0.0356 5	$\alpha(N)=0.0001099 \ 16; \ \alpha(O)=2.150\times 10^{-5} \ 30; \\ \alpha(P)=2.072\times 10^{-6} \ 29 \\ Mult.: \ \alpha(K)exp=0.0126 \ 18 \ and \ \alpha(L)exp=0.0018 \ 5. \\ \alpha(K)=0.02458 \ 35; \ \alpha(L)=0.00833 \ 12; \\ \alpha(M)=0.002081 \ 30 \\ \end{array}$

Continued on next page (footnotes at end of table)

¹⁹⁸Hg(α ,2n γ) 1973Dj01,1978Mc03 (continued)

$\gamma(^{200}\text{Pb})$ (continued)

E_{γ}^{\dagger}	I_{γ}^{\dagger}	E _i (level)	\mathbf{J}_i^{π}	\mathbf{E}_{f}	\mathbf{J}_{f}^{π}	Mult.‡	α #	Comments
×400.1.6								$\alpha(N)=0.000527 \ 8; \ \alpha(O)=9.91\times10^{-5} \ 14; \\ \alpha(P)=7.48\times10^{-6} \ 11 \\ Mult.: \ \alpha(K)exp=0.025 \ 3, \ \alpha(L)exp=0.0084 \ 12 \ and \\ \alpha(M)exp=0.0022 \ 3. \end{cases}$
77628	37	2958.6	10^{+}	2182.4	0 -	F1	0 00399 6	$\alpha(\mathbf{K}) = 0.00332$ 5: $\alpha(\mathbf{I}) = 0.000515$ 7: $\alpha(\mathbf{M}) = 0.0001191$
770.2 8	51	2956.0	10	2102.4	7	EI	0.00399 0	$a(\mathbf{K})=0.00532$ 3, $a(\mathbf{L})=0.000513$ 7, $a(\mathbf{M})=0.0001191$ 17 $\alpha(\mathbf{N})=3.01\times10^{-5}$ 4; $\alpha(\mathbf{O})=5.95\times10^{-6}$ 8; $\alpha(\mathbf{P})=6.05\times10^{-7}$ 9 E _γ : Placement from 1978Mc03. Seen also in singles in 1973Dj01. Mult.: $\alpha(\mathbf{K})$ exp=0.0038 14.
^x 978.6 7								
1026.3 5	100	1026.3	2+	0	0+	E2	0.00633 9	$\begin{aligned} &\alpha(\text{K}) = 0.00506 \ 7; \ \alpha(\text{L}) = 0.000973 \ 14; \ \alpha(\text{M}) = 0.0002314 \\ &32 \\ &\alpha(\text{N}) = 5.86 \times 10^{-5} \ 8; \ \alpha(\text{O}) = 1.147 \times 10^{-5} \ 16; \\ &\alpha(\text{P}) = 1.111 \times 10^{-6} \ 16 \\ &\text{Mult.:} \ \alpha(\text{K}) \text{exp} = 0.0043 \ 9 \text{ and } \alpha(\text{L}) \text{exp} = 0.0008 \ 3. \end{aligned}$

[†] From 40-MeV data in 1973Dj01, unless otherwise stated.

[±] From $\alpha(K)$ exp, $\alpha(L)$ exp and $\alpha(M)$ exp, determined by the evaluator from the measured γ and ce intensities in 1978Mc03. [#] Additional information 1. ^x γ ray not placed in level scheme.

¹⁹⁸Hg(α,2nγ) 1973Dj01,1978Mc03

 $^{200}_{82}{\rm Pb}_{118}$