¹⁹⁹Hg(\mathbf{n},γ) E=th:secondary **1974Br02**

		History	
Туре	Author	Citation	Literature Cutoff Date
Full Evaluation	F. G. Kondev	NDS 192,1 (2023)	1-Aug-2023

²⁰⁰Hg Levels

 $J^{\pi}(^{199}\text{Hg})=1/2^{-}$.

1974Br02: The low energy region was measured with the bent-crystal spectrometer at Riso, Denmark. The target consisted of 37 mg HgS with an isotopic enrichment of 97%. The medium- and high-energy γ rays, coincidence spectra, and $\gamma\gamma(\theta)$ were measured at the BNL high flux reactor using Ge(Li) detectors. The target consisted of 70 mg HgS with an isotopic enrichment of 97%.

Others: 2011Be36, 1989AH01, 1987SU15, 1967Ba07, 1967Ba20, 1969Lo04, 1969Sc03, 1971Ma10.

The decay scheme is based mainly on 1974Br02. Additional levels at 3216.75, 3353.05, 3452.96, 3492.60 and 3655.05 keV (and γ -ray placements) based on primary E γ , intensity balances and good energy fits are proposed by the evaluator.

Jπ‡ Jπ‡ E(level)[†] Jπ E(level)[†] E(level) $T_{1/2}$ 0.0 0^{+} stable 2074.333 21 2697.138 24 $(1,2)^+$ $(2)^{+}$ 367.943 10 2^{+} 2114.356 19 3+ 2701.36 3 2^{+} 0^+ 947.243 16 4^+ 2116.547 19 2763.094 22 $(1,2)^+$ 0^{+} 2126.855 18 2^{+} 1029.346 17 2794.16 3 $(1,2)^+$ 1254.100 17 2^{+} 2127.932 18 $(2,3)^+$ 2847.62 4 1- 0^{+} 2189.474 19 1^{+} 2853.00 11 $(1.2)^+$ 1515.176 17 1^{+} 1570.277 17 1^{+} 2229.273 19 2862.34 5 $(1,2)^+$ 1573.666 17 2^{+} 2246.446 19 $(1,2)^+$ 2877.878 25 1^{+} 2^{+} 2274.227 19 $(2)^{+}$ 2937.55 12 $1^+, 2^+$ 1593.428 17 2288.94 4 1^{+} 2^{+} 2960.14 4 1630.899 17 1^{-} 1641.445 17 2^{+} 2296.34 3 1^{+} 2978.212 25 1^{+} 1^+ 2^{+} 3^{+} 1659.007 19 2331.777 18 3053.31 8 1^{+} $1^+, 2^+, 3^+$ 1^{+} 1718.305 17 2343.593 25 3073.82 *3* 1^{+} 1730.927 17 2^{+} 2370.041 18 3186.33 3 1^{+} 2388.69 4 1734.344 17 3^{+} $(1,2,3)^+$ 3216.75 13 $(2)^{+}$ 2411.828 21 1775.564 18 3^{+} $(2)^{+}$ 3269.41 7 1^{+} 1^+ 3^+ 2442.71? 5 1845.778 17 1-3288.92 7 (1⁺) 1^{+} 1856.783 17 0^{+} 2461.83 4 3353.05 12 1882.860 17 2^{+} 2491.425 21 $(2)^{+}$ 3452.96 7 $(1)^{+}$ 1972.279 18 $(2)^{+}$ 2590.86 13 1^{-} 3492.60 5 1^{+} 1^+ 1^+ 1974.337 18 $(3)^{+}$ 2639.924 21 3568.6 10 2061.255 17 1^{+} 2691.58 4 $(1,2)^+$ 3655.05 4 $(1)^{+}$ [†] From a least-squares fit to $E\gamma$.

[‡] From deduced transition multipolarities using $\gamma\gamma(\theta)$ and $\alpha(K)$ exp, and γ -ray deexcitation pattern.

γ (²⁰⁰Hg)

I γ normalization: From I γ (368 γ)=81 12 photons per 100 n-captures in natural mercury (1970Or05) and 98.04% 12 of all thermal n-captures due to ¹⁹⁹Hg (2018MuZY).

E_{γ}^{\dagger}	$I_{\gamma}^{\dagger d}$	E _i (level)	\mathbf{J}_i^{π}	\mathbf{E}_{f}	\mathbf{J}_f^{π}
76.857 4	2.1 6	1718.305	1+	1641.445	2+
^x 83.639 ^g 9	3.9				
^x 97.548 <mark>8</mark> 9	2.5				
^x 97.761 10	2.3				
^x 99.779 ^g 10	2.1				
^x 113.24 ^g 2	1.0				
115.714 9	1.4 4	1630.899	1^{+}	1515.176	0^{+}
^x 130.26 ^g 2	0.4				
137.50 2	0.4	1730.927	2^{+}	1593.428	2^{+}
138.471 16	0.4	1856.783	0^{+}	1718.305	1^{+}
140.898 12	0.50 15	1734.344	3+	1593.428	2+
144.639 ^e 10	1.10 ^e 17	1718.305	1^{+}	1573.666	2+
144.639 ^e 10	1.10 ^e 17	1775.564	3+	1630.899	1^{+}
148.026 4	0.95 10	1718.305	1^{+}	1570.277	1^{+}
148.500 ^e 6	0.17 ^e 4	1882.860	2+	1734.344	3+
148.500 ^e 6	0.17 ^e 4	2639.924	1^{+}	2491.425	$(2)^{+}$
151.932 [‡] 5	0.28 5	1882.860	2+	1730.927	2+
^x 156.634 12	0.05				
^x 159.299 6	0.32 7				
^x 160.49 ^g 3	0.11				
160.659 ^e 11	0.07^{e}	1730.927	2+	1570.277	1^{+}
160.659 ^e 11	0.07 ^e	1734.344	3+	1573.666	2+
^x 162.434 ^g 13	0.05				
164.544 6	0.39 4	1882.860	2+	1718.305	1^{+}
^x 164.658 ^g 15	0.04				
^x 167.483 [‡] 7	0.110 22				
182.53 <i>3</i>	0.07	2411.828	$(2)^{+}$	2229.273	1^{+}
^x 182.70 ^g 3	0.06				
x185.911 10	0.060 18				
^x 185.98 ^g 2	0.04				
186.771 <i>13</i>	0.050 18	1845.778	3+	1659.007	3+
^x 189.96 ^g 2	0.03				
^x 190.24 ^g 2	0.03				
^x 197.45 2	0.03				
201.91 2	0.040 14	1775.564	3+	1573.666	2^{+}

Ν

¹⁹⁹Hg(\mathbf{n},γ) E=th:secondary **1974Br02** (continued)

γ (²⁰⁰Hg) (continued)

E_{γ}^{\dagger}	$I_{\gamma}^{\dagger d}$	E _i (level)	\mathbf{J}_i^{π}	E_f	J_f^π	Mult. ^a	Comments
x202.966 13	0.060 18						
203.135 7	0.56 6	1718.305	1^{+}	1515.176	0^{+}	M1	Mult.: $\alpha(K) \exp = 0.76$ 22.
203.832 12	0.060 18	2331.777	2+	2127.932	$(2,3)^+$		
204.477 8	0.230 23	2061.255	1^{+}	1856.783	0^{+}		
x206.083 9	0.090 14						
^x 214.44 2	0.04						
^x 215.598 9	0.130 20						
215.743 <i>13</i>	0.060 15	1730.927	2+	1515.176	0^{+}		
^x 223.494 7	0.110 17						
224.750 6	0.190 19	1254.100	2+	1029.346	0^{+}		
225.885 6	0.65 4	1856.783	0^{+}	1630.899	1+	M1	Mult.: α (K)exp=0.63 20.
x227.65 2	0.040 14						
x235.516 10	0.050 10						
241.356 12	0.050 18	1972.279	$(2)^{+}$	1730.927	2+		
241.425 10	0.070 18	1882.860	2+	1641.445	2+		
243.411 7	0.250 20	1974.337	$(3)^{+}$	1730.927	2+		
^x 245.223 8	0.160 24						
^x 247.35 2	0.030 9						
x249.265 14	0.030 11						
^x 250.778 13	0.040 10						
251.969 7	0.72 5	1882.860	2+	1630.899	1+		
252.356 7	0.41 3	1845.778	3+	1593.428	2+		
253.991 15	0.040 12	1972.279	$(2)^{+}$	1718.305	1^{+}		
^x 255.75 3	0.050 13						
^x 268.18 ^g 3	0.03						
268.49 <mark>8</mark> 3	0.03	2114.356	3+	1845.778	3+		
270.530 12	0.070 14	2331.777	2+	2061.255	1^{+}		
271.68 2	0.060 9	2763.094	$(1,2)^+$	2491.425	$(2)^{+}$		
272.109 ^e 8	0.330 ^e 23	1845.778	3+	1573.666	2+	(M1)	Mult.: $\alpha(K) \exp = 0.60$.
							I_{γ} : From adopted gammas.
272.109 ^e 8	0.330 ^e 23	2246.446	$(1,2)^+$	1974.337	$(3)^{+}$	(M1)	Mult.: $\alpha(K) \exp = 0.60$.
275.497 12	0.060 9	1845.778	3+	1570.277	1^{+}		
^x 278.17 3	0.070 18						
^x 278.274 13	0.090 23						
^x 278.88 3	0.030 11						
281.08 ^e 2	0.050 ^e 10	2126.855	2+	1845.778	3+		
281.08 ^e 2	0.050 ^e 10	2978.212	1+	2697.138	$(1,2)^+$		
283.88 <i>3</i>	0.040 12	2411.828	$(2)^{+}$	2127.932	$(2,3)^+$		
286.518 13	0.070 11	1856.783	0^{+}	1570.277	1^{+}		
^x 287.182 10	0.110 11						
^x 287.620 <i>13</i>	0.060 12						

ω

				¹⁹⁹ Hg (\mathbf{n},γ)	E=th:second	ary 1974Br02 (continued)
					γ (²⁰⁰ Hg) (continued)
${\rm E_{\gamma}}^{\dagger}$	$I_{\gamma}^{\dagger d}$	E _i (level)	\mathbf{J}_i^{π}	$\mathbf{E}_f \qquad \mathbf{J}_f^{\pi}$	Mult. ^a	Comments
289.425 9 ^x 298.34 4 ^x 298.75 ^g 6 ^x 299.53 ^g 6	1.30 8 0.030 <i>11</i> 0.04 0.05	1882.860	2+	1593.428 2+	M1	Mult.: $\alpha(K) \exp = 0.37 \ 10.$
299.887 <i>12</i> 301.963 ^e <i>13</i> 301.963 ^e <i>13</i>	0.090 <i>14</i> 0.070 ^e <i>11</i> 0.070 ^e <i>11</i>	2274.227 2274.227 2491.425	$(2)^+$ $(2)^+$ $(2)^+$	$\begin{array}{rrr} 1974.337 & (3)^+ \\ 1972.279 & (2)^+ \\ 2189.474 & 1^+ \end{array}$		
306.618 <i>11</i> 306.863 <i>11</i> 308.47 ^e 4	0.180 <i>18</i> 0.120 <i>15</i> 0.030 ^e <i>12</i>	2189.474 1254.100 2697.138	1^+ 2^+ $(1,2)^+$	$\begin{array}{c} 1882.860 & 2^{+} \\ 947.243 & 4^{+} \\ 2388.69 & (1,2,3)^{+} \\ \end{array}$		
308.47^{e} 4 308.801 11 309.209 8 212.612 12	0.030° 12 0.140 14 0.55 4	3186.33 2370.041 1882.860	1^+ 1^+ 2^+ 2^+	2877.878 1 ⁺ 2061.255 1 ⁺ 1573.666 2 ⁺	M1	Mult.: $\alpha(K)$ exp>0.47.
313.23 <i>3</i> 316.176 8 ^x 317 74 <i>1</i> 0	0.080 <i>10</i> 0.040 <i>10</i> 1.12 <i>7</i> 0.03	1972.279 1570.277	$(2)^+$ 1 ⁺	$\begin{array}{c} 1370.277 & 1 \\ 1659.007 & 3^{+} \\ 1254.100 & 2^{+} \end{array}$	M1(+E2)	Mult.: $\alpha(K) \exp = 0.33$ 15.
x318.03 8 319.566 15 321.55 3 x322.57 5	0.04 0.080 <i>12</i> 0.060 <i>12</i> 0.050 <i>13</i>	1573.666 2691.58	2^+ (1,2) ⁺	1254.100 2 ⁺ 2370.041 1 ⁺	(M1+E2)	Mult.: $\alpha(K)$ exp=0.31 21 (1987Su15).
x325.31 4 x329.27 4 330.303 16 330.84 3	0.040 <i>12</i> 0.030 <i>11</i> 0.110 <i>17</i> 0.06	2061.255 1972.279	$\frac{1^{+}}{(2)^{+}}$	$1730.927 \ 2^+ \\ 1641.445 \ 2^+$		
331.34 <i>3</i> 332.67 <i>4</i> 337.51 2	0.050 <i>13</i> 0.050 <i>15</i> 0.050 <i>10</i>	2701.36 2189.474 2411.828	2^+ 1^+ $(2)^+$	$\begin{array}{c} 2370.041 & 1^{+} \\ 1856.783 & 0^{+} \\ 2074.333 & (2)^{+} \end{array}$		
338.75 2 339.40	0.210 <i>17</i> 0.24 <i>12</i>	2114.356 1593.428	3+ 2+	1775.564 3 ⁺ 1254.100 2 ⁺	M1(+E0)	I _{γ} : From I γ (339.4 γ)/I γ (1225.44 γ) in 1987Su15 and I γ (1225.44 γ)=40 from 1974Br02.
340.03 <i>2</i> 341.375 <i>12</i>	0.090 <i>11</i> 0.210 <i>17</i>	2074.333 1972.279	$(2)^+$ $(2)^+$	1734.344 3 ⁺ 1630.899 1 ⁺		Mult.: $\alpha(K) \exp[=0.20 \ 8 \ (198 / Sulfs)]$.
341.82 ^x 342.185 <i>14</i> ^x 342.42 <i>3</i>	0.210 <i>17</i> 0.050 <i>18</i>	1856.783	0+	1515.176 0+	E0	$ce(K)(341.8)/ce(K)(886.2)=0.06\ 2\ (1987Su15).$
342.939 <i>12</i> 343.38 <i>2</i> 346.406 <i>14</i>	0.39 <i>4</i> 0.070 <i>11</i> 0.190 <i>19</i>	2061.255 2074.333 2229.273	1^+ (2) ⁺ 1^+	1718.305 1 ⁺ 1730.927 2 ⁺ 1882.860 2 ⁺		
351.27 ^e 2	0.31 ^e 4	2126.855	2+	1775.564 3+		

From ENSDF

 $^{200}_{80} Hg_{120}\text{-}4$

L

¹⁹⁹Hg(n,γ) E=th:secondary **1974Br02** (continued)

γ (²⁰⁰Hg) (continued)

E_{γ}^{\dagger}	$I_{\gamma}^{\dagger d}$	E _i (level)	\mathbf{J}_i^{π}	\mathbf{E}_{f}	\mathbf{J}_f^{π}	Mult. ^a	Comments
351.27 ^e 2	0.31 ^e 4	2763.094	$(1,2)^+$	2411.828	$(2)^{+}$		
352.353 12	0.27 3	2127.932	$(2,3)^+$	1775.564	3+		
^x 353.07 5	0.040 14						
^x 356.44 4	0.090 23						
359.48 4	0.070 18	2331.777	2+	1972.279	$(2)^{+}$		
363.72 8	0.040 16	2246.446	$(1,2)^+$	1882.860	2+		
367.942 10	1180 50	367.943	2+	0.0	0^{+}	E2	Mult.: α (K)exp=0.036 7.
376.68 2	0.20 5	3073.82	1+	2697.138	$(1,2)^+$		
376.79 2	0.23 5	1630.899	1+	1254.100	2+		
380.03 2	0.100 13	2114.356	3+	1734.344	3+		
383.437 11	0.32 3	2114.356	3+	1730.927	2+		
387.345 9	1.59 10	1641.445	2+	1254.100	2+	M1(+E0)	Mult.: α (K)exp=0.18 2 (1987Su15) and 0.22 5 (1974Br02).
392.524 17	0.120 14	2126.855	2+	1734.344	3+		
395.97 4	0.060 15	2126.855	2+	1730.927	2+		
397.01 2	0.160 21	2127.932	$(2,3)^+$	1730.927	2+		
397.765 14	0.29 4	2370.041	1+	1972.279	$(2)^{+}$		
398.249 9	3.70 19	2116.547	0^{+}	1718.305	1^{+}	M1	Mult.: α (K)exp=0.21 4.
398.63 2	0.22 3	1972.279	$(2)^{+}$	1573.666	2+		
399.65 5	0.040 16	3452.96	$(1)^{+}$	3053.31	1^{+}		
404.94 ^e 4	0.060 ^e 10	1659.007	3+	1254.100	2+		
404.94 ^e 4	0.060 ^e 10	2847.62	1-	2442.71?	1-		
408.556 10	1.34 8	2126.855	2^{+}	1718.305	1^{+}	M1	Mult.: $\alpha(K) \exp[=0.18 5]$.
409.63 <i>3</i>	0.090 17	2127.932	$(2,3)^+$	1718.305	1^{+}		
414.41 <mark>8</mark> 7	0.04	2388.69	$(1,2,3)^+$	1974.337	$(3)^{+}$		
415.50 <i>3</i>	0.090 12	3353.05	1+	2937.55	$1^+, 2^+$		
419.828 10	1.81 11	2061.255	1+	1641.445	2+	M1	Mult.: $\alpha(K) \exp[=0.12 3]$.
423.24 <i>3</i>	0.170 24	3186.33	1+	2763.094	$(1,2)^+$		
^x 427.79 3	0.140 19						
428.45 <i>3</i>	0.130 17	2274.227	$(2)^{+}$	1845.778	3+		
^x 429.79 7	0.06						
430.368 10	4.7 3	2061.255	1+	1630.899	1^{+}	M1	Mult.: α (K)exp=0.13 3.
^x 437.03 5	0.05						
437.56 <mark>8</mark> 13	0.060 24	2411.828	$(2)^{+}$	1974.337	$(3)^{+}$		
439.52 ^e 4	0.080 ^e 20	2296.34	1+	1856.783	0^{+}		
439.52 ^e 4	0.080 ^e 20	2411.828	$(2)^{+}$	1972.279	$(2)^{+}$		
^x 445.686 14	0.51 4						
448.91 2	1.09 9	2331.777	2+	1882.860	2+		
^x 452.30 ^g 14	0.07						
453.60 16	0.07	2229.273	1+	1775.564	3+		
453.60 16	0.07	3216.75	$(2)^{+}$	2763.094	$(1,2)^+$		
455.13 4	0.110 17	2189.474	1+	1734.344	3+		

S

¹⁹⁹Hg(\mathbf{n},γ) E=th:secondary **1974Br02** (continued)

γ (²⁰⁰Hg) (continued)

${\rm E_{\gamma}}^{\dagger}$	$I_{\gamma}^{\dagger d}$	E _i (level)	\mathbf{J}_i^{π}	E_f	${ m J}_f^\pi$	Mult. ^a	Comments
^x 456.10.5	0.070 18						
458.80.9	0.070 25	2847.62	1-	2388.69	$(1.2.3)^+$		
460.76 5	0.090 23	2343.593	$1^{+}.2^{+}.3^{+}$	1882.860	2+		
^x 461.16 9	0.070 21		, ,-				
^x 462.94 5	0.080 20						
464.214 12	1.31 8	1718.305	1+	1254.100	2+	M1(+E2)	Mult.: $\alpha(K) \exp = 0.05$.
466.72 3	0.100 25	2763.094	$(1,2)^+$	2296.34	1+		
467.86 ^e 2	1.65 ^e 10	2061.255	1+	1593.428	2+	(M1)	Mult.: $\alpha(K) \exp[=0.14 4]$.
467.86 ^e 2	1.65 ^e 10	2126.855	2^{+}	1659.007	3+	(M1)	Mult.: $\alpha(K) \exp = 0.14 4$.
467.86 ^e 2	1.65 ^e 6	2697.138	$(1,2)^+$	2229.273	1+	(M1)	Mult.: $\alpha(K) \exp = 0.14 4$.
468.73 ^e 3	0.29 ^e 7	2960.14	1-	2491.425	$(2)^{+}$		
468.73 ^e 3	0.29 ^e 7	3655.05	$(1)^{+}$	3186.33	1+		
468.93 2	0.35 7	2127.932	$(2,3)^+$	1659.007	3+		
471.19 <i>3</i>	0.140 21	2189.474	1+	1718.305	1+		
472.12 8	0.070 21	2701.36	2+	2229.273	1+		
475.08 ^e 4	0.100 ^e 20	2116.547	0^{+}	1641.445	2+		
475.08 ^e 4	0.100 ^e 20	2331.777	2^{+}	1856.783	0^{+}		
476.815 <i>13</i>	1.95 12	1730.927	2+	1254.100	2+	E2+M1(+E0)	Mult.: α (K)exp=0.022 5 (1987Su15) and 0.02 (1974Br02).
480.24 3	0.220 25	1734.344	3+	1254.100	2+		
^x 482.32 6	0.080 24						
483.34 9	0.07	2114.356	3+	1630.899	1+		
485.36 2	0.98 11	2126.855	2+	1641.445	2+		α (K)exp>0.017.
485.62 2	2.42 20	2116.547	0^{+}	1630.899	1+	M1	Mult.: $\alpha(K) \exp > 0.056$.
485.64		1515.176	0^{+}	1029.346	0^{+}	E0	Mult.: From 1987Su15; ce(K)(485.6)/ce(K)(886.2)=0.046 5 (1987Su15).
486.44 7	0.08 3	2127.932	$(2,3)^+$	1641.445	2+		
487.12 <i>3</i>	0.52 6	2370.041	1+	1882.860	2+		
487.56 2	1.81 13	2061.255	1+	1573.666	2+	M1+E2	Mult.: α (K)exp>0.048.
490.95 2	1.16 7	2061.255	1+	1570.277	1+	M1+E2	Mult.: α (K)exp=0.044.
^x 491.70 6	0.100 25						
^x 495.48 8	0.09 4		a +	1 (
495.93 2	3.05 19	2126.855	2+	1630.899	1	M1(+E2)	Mult.: $\alpha(K) \exp[=0.061]$.
497.81° 2	0.86° 6	2343.593	$1^+, 2^+, 3^+$	1845.778	3+		
497.81° 2	0.86° 6	2794.16	$(1,2)^{+}$	2296.34	1		
498.63 4	0.180 24	2274.227	(2) ⁺	1775.564	3-		
*502.83 4	0.220 25	0704.16	(1, 0) +	2200.04	a+		
505.23 3	0.140 24	2/94.16	(1,2)	2288.94	$\frac{2}{(1+)}$		
517.14.7	0.2/4	2978.212	1'	2401.83	(1')		
51/.14 /	0.15 4	2491.425	$(2)^{-}$	19/4.53/	$(3)^{+}$		
520.91 5 521 41 7	0.214	2114.330 1775 564	3' 2+	1090.428	∠ · 2+		
522.52.6	0.13 4	1//3.304	5 · 1+	1234.100	∠` 1=		
552.55 0	0.11 5	3492.60	1	2960.14	1		

				199]	Hg(n,γ)]	E=th:second	ary 1974Br02 (continued)
						γ (²⁰⁰ Hg	(continued)
E_{γ}^{\dagger}	$I_{\gamma}^{\dagger d}$	E _i (level)	\mathbf{J}_i^{π}	\mathbf{E}_{f}	\mathbf{J}_{f}^{π}	Mult. ^a	Comments
533.48 <i>3</i>	0.47 5	2126.855	2+	1593.428	2+	M1	Mult.: $\alpha(K)$ exp>0.13.
534.48 <i>3</i> *535.01 <i>5</i> *537.30 <i>5</i>	0.17 <i>3</i> 0.14 <i>3</i> 0.20 <i>4</i>	2127.932	(2,3)+	1593.428	2+		E_{γ} : From adopted gammas.
540.948 <i>16</i> 544.21 7	9.8 <i>6</i> 0.100 <i>20</i>	1570.277 1573.666	$\frac{1^{+}}{2^{+}}$	1029.346 1029.346	0^+ 0^+	M1	Mult.: $\alpha(K) \exp = 0.064 \ 10.$
546.10 ^e 2	0.71 ^e 5	2061.255	1+	1515.176	0^+	M1	Mult.: $\alpha(K) \exp = 0.094$ 35.
546.10 ^e 2 ^x 546.99 ^g 12 ^x 551.93 8 ^x 552.49 ^g 19	0.71° 5 0.07 0.17 5 0.08	2877.878	1+	2331.777	2+	(M1)	Mult.: $\alpha(K) \exp = 0.094$ 35.
553.18 2	1.25 9	2126.855	2+	1573.666	2+	M1	Mult.: $\alpha(K) \exp = 0.056 \ 20.$
556.58 2	3.38 21	2126.855	2^+	1570.277	1 ⁺	M1(+E2)	Mult.: $\alpha(K) \exp = 0.050 \ 13$.
558.01° 5	$0.15^{\circ} 3$	2189.474	1' 1-	1030.899	1 ' 2+		
x562.57.3	0.13 5	2847.02	1	2200.94	Z		
563.63 9	0.11 4	2691.58	$(1.2)^+$	2127.932	$(2.3)^+$		
564.19 5	0.17 4	1593.428	2+	1029.346	0+		
566.15 5	0.26 4	2411.828	$(2)^{+}$	1845.778	3+		
568.04 ^e 7	0.13 ^e 4	2343.593	$1^+, 2^+, 3^+$	1775.564	3+		
568.04 ^e 7	0.13 ^e 4	3269.41	1^{+}	2701.36	2+		
^x 571.8 ^g 3	0.09						
573.41 ^e 4	0.27 ^e 4	2701.36	2^{+}	2127.932	$(2,3)^+$		
573.41 ^e 4	0.27^{e} 4	2847.62	1-	2274.227	$(2)^{+}$		
573.41 ^e 4	0.27 ^e 4	2862.34	$(1,2)^+$	2288.94	2+		
577.98 6	0.20 7	2296.34	1+	1718.305	1+		
579.300 17	27.8 17	947.243	4+	367.943	2*	E2	Mult.: $\alpha(K)\exp=0.0144; \gamma\gamma(\theta)$ in 2011Be36, 1989Ah01.
[*] 583.00 10	0.08 3						
^x 585.18 [#] 8	0.10 4						
586.98 12	0.09 4	2701.36	2+	2114.356	3+		
587.88 4	0.27 4	2229.273	1+	1641.445	2+		
588.96 6	0.17 3	2877.878	1+	2288.94	2+		
591.66 3	1.22 9	1845.778	3+	1254.100	2+	M1(+E2)	Mult.: α (K)exp=0.027.
596.06 <i>3</i>	0.43 5	2189.474	1+	1593.428	2+		
597.41 4	0.31 5	2331.777	2+	1734.344	3		
598.35 3	0.66.6	2229.273	1 ⁺	1630.899	1+	M1(+E2)	Mult.: $\alpha(K) \exp > 0.025$.
^598.99 ⁸ 13	0.14	2452.04	(1)+	0050.00	(1.0)+		
599.93 11	0.09 4	3452.96	$(1)^{+}$	2853.00	$(1,2)^{+}$		
000.82 4	0.3/4	2331.///	2	1730.927	2		

From ENSDF

L

	¹⁹⁹ Hg(n,γ) E=th:secondary 1974Br02 (continued)												
						γ (²⁰⁰ Hg	g) (cont	inued)					
E_{γ}^{\dagger}	$I_{\gamma}^{\dagger d}$	E _i (level)	\mathbf{J}_i^{π}	E_f	\mathbf{J}_{f}^{π}	Mult. ^a	$\delta^{\boldsymbol{b}}$	Comments					
601.48 5	0.27 5	1630.899	1^{+}	1029.346	0^{+}								
602.73 7	0.18 4	1856.783	0^{+}	1254.100	2+								
x607.26 10	0.080 24												
608.22 9	0.19 7	2978.212	1^{+}	2370.041	1+								
^x 608.93 13	0.2												
^x 609.94 13	0.11 5												
612.12 3	2.48 20	1641.445	2+	1029.346	0+			α (K)exp<0.016.					
613.55 5	0.25 5	2331.777	2+	1718.305	1+								
615.54 4	0.82 17	2246.446	$(1,2)^{+}$	1630.899	1 ⁺ 2+								
615.82° 10	0.49	2189.474	1'	15/3.666	$\frac{2}{(1 0)^{+}}$								
615.82° 10	0.49	2862.34	$(1,2)^{+}$	2246.446	$(1,2)^{+}$								
626 52 10	0.700	1572 666	2+	047 242	<u>4</u> +								
628 80 3	1.88 14	1373.000	$\frac{2}{2^+}$	1254 100	+ 2+	M1(+E2)	<1	Mult $\delta = \alpha(K) \exp(-0.037/10)$					
631 50 9	0.14 4	2877 878	1+	2246 446	$(1 2)^+$	$WII(\pm L2)$	≥ 1	Mult.,0. $u(\mathbf{K}) \exp[-0.037 \ 10]$.					
632.85.5	0.14 4	2077.070	$(2)^{+}$	1641 445	(1,2) 2^+								
634.66° 10	0.17^{e} 5	2491 425	$(2)^+$	1856 783	0^{+}								
634.66° 10	0.17^{e} 5	2978 212	1+	2343 593	$1^+ 2^+ 3^+$								
635.86° 16	0.14^{e}	2229 273	1+	1593 428	2+								
635.86° 16	0.14^{e}	2370.041	1+	1734.344	3+								
635.86 ^e 16	0.14^{e}	2697.138	$(1.2)^+$	2061.255	1+								
^x 636.76 16	0.09												
x638.53 11	0.14												
639.11 4	0.80 7	2370.041	1^{+}	1730.927	2+								
643.29 4	0.62 7	2274.227	$(2)^{+}$	1630.899	1+								
644.93 5	0.23 4	3492.60	1^{+}	2847.62	1-								
646.17 7	0.19 4	1593.428	2+	947.243	4+								
^x 649.24 [#] 8	0.21 4												
651.4 <i>3</i>	0.19 6	2370.041	1^{+}	1718.305	1+								
652.91 [#] 8	0.21 4	2246.446	$(1,2)^+$	1593.428	2+								
655.59 5	0.32 5	2229.273	1+	1573.666	2+								
659.01 <i>3</i>	1.44 15	2229.273	1^{+}	1570.277	1+								
661.36 <i>3</i>	81 6	1029.346	0^{+}	367.943	2+	E2		Mult.: α (K)exp=0.0102 <i>14</i> ; $\gamma \gamma(\theta)$ in 1989Ah01, 1974Br02.					
674.29 7	0.27 8	2189.474	1^{+}	1515.176	0^{+}								
676.15 3	2.57 21	2246.446	$(1,2)^+$	1570.277	1+	M1+E2		Mult.: α (K)exp=0.029 9 (1974Br02).					
677.45 7	0.56 8	2411.828	$(2)^{+}$	1734.344	3+								
681.87 8	0.37 10	2978.212	1+	2296.34	1+								
685.19 <i>12</i>	0.20 6	3073.82	1+	2388.69	$(1,2,3)^+$								
^x 687.1 ⁸ 3	0.2				- 1								
688.94 <i>3</i>	9.2 7	1718.305	1+	1029.346	0+	M1		Mult.: α (K)exp=0.033 <i>3</i> .					

¹⁹⁹Hg(n,γ) E=th:secondary **1974Br02** (continued)

γ (²⁰⁰Hg) (continued)

${\rm E_{\gamma}}^{\dagger}$	$I_{\gamma}^{\dagger d}$	E _i (level)	\mathbf{J}_i^{π}	E_{f}	\mathbf{J}_f^{π}	Mult. ^a	Comments
690 28 6	0.60.15	2331 777	2+	1641 445	2+		
694 14 5	0.51.9	1641 445	$\frac{2}{2^{+}}$	947 243	$\frac{2}{4^+}$		
695.72.20	0.17	2288.94	$\frac{2}{2^{+}}$	1593.428	2+		
700.17 15	0.27 10	2274.227	$(2)^{+}$	1573.666	- 2 ⁺		
701.56 3	8.2 7	1730.927	2+	1029.346	0^{+}	(E2)	Mult.: $0.003 < \alpha(K) \exp < 0.01$.
703.82 ^e 5	1.22 ^e 17	2274.227	$(2)^{+}$	1570.277	1^{+}		
703.82 ^e 5	1.22 ^e 17	3073.82	1+	2370.041	1+		
x706.26 15	0.20 6						
x709.32 12	0.23 6						
x710.22 11	0.30 8						
710.93 12	0.21 9	2370.041	1+	1659.007	3+		
711.70 5	0.85 8	1659.007	3+	947.243	4+		
713.94 10	0.26 5	2229.273	1^{+}	1515.176	0^{+}		
718.04 10	0.50 13	1972.279	$(2)^{+}$	1254.100	2+		
718.55 13	0.36 11	2288.94	2+	1570.277	1+		
720.21 5	0.78 7	1974.337	$(3)^{+}$	1254.100	2+		
721.0 ⁸ 8	0.2	3053.31	1+	2331.777	2+		
722.2 5	0.2	2296.34	1+	1573.666	2+		
724.78 10	0.21 6	3186.33	1+	2461.83	(1 ⁺)		
728.45 7	0.81 8	2370.041	1+	1641.445	2+		
733.4 ^e 3	0.43 ^e 11	2794.16	$(1,2)^+$	2061.255	1+		
733.4° 3	0.43° 11	2847.62	1-	2114.356	3+		
738.5° 2	0.25	2331.777	2+	1593.428	2+		
738.5° 2	0.25	2853.00	$(1,2)^+$	2114.356	3+		
739.05 16	0.41 13	2370.041	1	1630.899	1		
743.52° 8	0.53° 7	2461.83	(1')	1718.305	1'		
743.52 8	0.53 7	3186.33	1'	2442.71?	1		
* 745.22 12	0.26 /	2299 (0	$(1, 2, 2)^{+}$	1641 445	a +		
747.30 9	0.38 /	2388.69	$(1,2,3)^{+}$	1641.445	2' 1+		
748.84 10	0.48 10	29/8.212	1 ' 1 +	2229.273	$(2, 2)^+$		
749.9 2	0.18 /	2011.010	$(1)^{+}$	2127.932	(2,3)		
753.92 10	0.100	3432.90	(1) $(2)^+$	2097.138	(1,2) 2+		
$757.01 \ 0$ $757.01^{\circ} 6$	1.23 I2 $1.22^{e} I2$	2491.423	(2)	1/34.344	5 2+		
750 30 11	1.25 12 0.34 6	2039.924	$(2)^+$	1515 176	2 0 ⁺		
761 /3 ^e 12	0.540 0.50 ⁶ 21	2214.221	$\binom{2}{2^+}$	1570 277	1+		
761.43^{e} 12	0.59 21 0.59 ⁶ 21	3452.96	$(1)^{+}$	2691 58	$(1 2)^+$		
762 10 19	0.33	3353.05	1+	2590.86	1-		
x778.89 14	0.29 8	2222.02	1	2370.00			
×780.028 18	0.44						
	~ • • •						

¹⁹⁹Hg(\mathbf{n},γ) E=th:secondary **1974Br02** (continued)

$\gamma(^{200}\text{Hg})$ (continued)

E_{γ}^{\dagger}	$I_{\gamma}^{\dagger d}$	E _i (level)	\mathbf{J}_i^{π}	E_f	\mathbf{J}_{f}^{π}	Mult. ^a	$\delta^{\boldsymbol{b}}$	Comments
780.96 ^e 11	0.28 ^e 7	2296.34	1+	1515.176	0^{+}			
780.96 ^e 11	0.28 ^e 7	2411.828	$(2)^{+}$	1630.899	1+			
783.71 4	3.00 24	1730.927	2+	947.243	4+	E2		Mult.: From $\gamma\gamma(\theta)$ in 2011Be36; $\alpha(K)$ exp<0.014.
784.9 <i>3</i>	0.24	3073.82	1+	2288.94	2+			
787.10 4	3.1 3	1734.344	3+	947.243	4+	M1+E2	$+0.08^{\circ}$ 4	Mult.: α (K)exp>0.019; $\gamma\gamma(\theta)$ in 2011Be36.
788.77 ^e 6	1.13 ^e 16	2763.094	$(1,2)^+$	1974.337	$(3)^+$			
788.77 ^e 6	1.13 ^e 16	2978.212	1+	2189.474	1+			
x789.73 19	0.37 13				a +	2.64		
796.41 6	1.67 14	2370.041	1+	1573.666	2+	M1		Mult.: $\alpha(K) \exp = 0.029 \ 8.$
797.4° 2	0.32° 11	3186.33	1	2388.69	(1,2,3)			
797.4° 2	0.32° 11	3288.92	1 ⁺	2491.425	$(2)^{+}$			
/99.90 18	0.5/1/	2370.041	1' 1+	15/0.277	2+	MITEO		Multi (K) and 0.019 5
807.203	$2.80\ 20$	2001.235	$(1 2 2)^+$	1254.100	2 · 1 +	MIT+E2		Mult.: $\alpha(\mathbf{K})\exp=0.018$ 3.
010.33° 11 010.22° 11	0.05° 11 0.62° 11	2366.09	(1,2,5) $(2)^+$	15/0.277	1 2+			
873 05 14	0.03 11 0.43 13	2411.020	(2) 1 ⁺	1393.428	2 1 ⁺			
827 47	0.45 15	1856 783	0^{+}	1029 346	0^{+}	F0		ce(K)(827.4)/ce(K)(886.2)=0.028.10.(1987Su15)
828.27 4	4.9 4	1775.564	3+	947.243	4 ⁺	M1(+E2)	-0.04 ^c 3	Mult.: $\alpha(K)exp=0.0205; \gamma\gamma(\theta) (2011Be36,1989Ah01).$
x x y z z = z z z z z z z z z z z z z z z z	0.2							$0. \text{ Other.} = 0.043 \text{ J2 Hom } \gamma(0) (1989\text{Anor}).$
851.36 /	0.5	2078 212	1+	2126 855	2+	$M1\pm F2$		Mult: $\alpha(K)$ evn=0.016.3
$051.50 \neq$	9.17	2976.212	1	2120.855	2+	WIT+L2		Mult.: $u(\mathbf{K})exp=0.010$ 3.
834.2" 2	0.60 21	3180.33	1	2331.777	2			
860.6 ^{e+#} 2	0.49 ^e 17	2491.425	$(2)^+$	1630.899	1+			
860.6 2	0.49° 17	3655.05	(1)'	2794.16	$(1,2)^{+}$			
861./1 12	0.95 18	2978.212	2+	2110.547	0' 2+			
8/2.95 14	0.09 13	2120.833	2* 2+	1254.100	2+	E2 + M1	1 70 12	So $O = 2.20 \pm 16.5 (1000 \pm 0.1)$
880.20 4	51 4	1254.100	Ζ.	307.943	2.	E2+M1	-1.72° 72	o: Other: $-2.20 + 10-5$ (1989Ah01). Mult.: α(K)exp=0.0093 3 (1987Su15) and 0.0081 11 (1974Br02); $\gamma\gamma(\theta)$ in 2011Be36, 1989Ah01, 1974Br02.
890.0 <mark>8</mark> 5	0.4	3186.33	1+	2296.34	1+			
896.7 2	0.2	2411.828	$(2)^{+}$	1515.176	0^{+}			
898.56 7	2.60 24	1845.778	3+	947.243	4+	M1+E2	-0.07° 4	Mult.: α (K)exp=0.0080 32; $\gamma\gamma(\theta)$ in 2011Be36.
901.69 <i>17</i>	0.6	3492.60	1+	2590.86	1-			
903.5 2	0.4	2877.878	1+	1974.337	$(3)^+$			
x904.36 <i>12</i>	1.4 5							
905.3° 4	0.6	2639.924	1+	1734.344	3+			
905.3° 4	0.6 ^e	2877.878	1^{+}	1972.279	$(2)^{+}$			
911.5 0	0.8 3	2/94.16	$(1,2)^+$	1882.860	2' 2+			
917.93	0.80 20	2491.425	(2)	15/3.666	2.			

 $^{200}_{80}\mathrm{Hg}_{120}\text{--}10$

¹⁹⁹Hg(\mathbf{n},γ) E=th:secondary **1974Br02** (continued)

$\gamma(^{200}\text{Hg})$ (continued)

E_{γ}^{\dagger}	$I_{\gamma}^{\dagger d}$	E _i (level)	\mathbf{J}_i^{π}	E_f	\mathbf{J}_f^{π}	Mult. ^a	Comments
935.45 8	2.1 3	2189.474	1+	1254.100	2+	M1+E2	Mult.: $\alpha(K) \exp[0.0094]$.
945.4 3	0.59 18	3288.92	1^{+}	2343.593	$1^+, 2^+, 3^+$		
^x 947.34 17	0.6				, ,		
957.19 ^e 13	0.86 ^e 16	2691.58	$(1,2)^+$	1734.344	3+		
957.19 ^e 13	0.86 ^e 16	3186.33	1^{+}	2229.273	1+		
957.19 ^e 13	0.86 ^e 16	3288.92	1^{+}	2331.777	2^{+}		
975.15 7	5.4 5	2229.273	1+	1254.100	2+	M1+E2	Mult.: α (K)exp=0.0100 23 (1974Br02).
980.2 5	0.9	3269.41	1+	2288.94	2+		
992.35 17	1.35 19	2246.446	$(1,2)^+$	1254.100	2+		
996.5 ^{e#} 7	0.60 ^e 24	2853.00	$(1,2)^+$	1856.783	0^{+}		
996.5 ^{e#} 7	0.60 ^e 24	3186.33	1^{+}	2189.474	1+		
x1002.5 3	1.2 5						
1008.7 4	1	2639.924	1^{+}	1630.899	1+		
1010.2 5	0.8	3452.96	$(1)^{+}$	2442.71?	1-		
^x 1013.9 3	4.1 7					E2	Mult.: α (K)exp=0.0043 13.
1022.5 ⁸ 4	0.7	3269.41	1+	2246.446	$(1,2)^+$		
1027.1 3	1.3 4	1974.337	(3) ⁺	947.243	4 ⁺	M1+E2	Mult.: From 1974Br02, but no $\alpha(K)$ exp value was provided by the authors.
1029.36	0.0	1029.346	0^+	0.0	0^+	E0	Mult.: From 198/Su15; $ce(K)(1029.3)/ce(K)(886.2)=0.028 \ 3 \ (198/Su15).$
1034.9 <i>10</i>	0.8	2288.94	21	1254.100	21		
~1038 <i>I</i>	0.8	2206.24	1+	1254 100	2+	(11)	$M_{\rm ell}$ (K) and 0.012
1042.4° 3 1042.4° 3	1.8 5	2290.34	1 · 2+	1254.100	2+ 2+	$(\mathbf{M}1)$	Mult.: $\alpha(\mathbf{K})\exp=0.012$.
1042.4° 3	1.0 5	2701.30	ے 1+	2246 446	$(1 2)^+$	(M1)	Mult: $\alpha(\mathbf{K}) \exp[-0.012]$
1042.4 5	1.8 5	2037 55	1^{+} 2 ⁺	1882 860	(1,2) 2^+	(M1) M1	Mult: $\alpha(\mathbf{K}) \exp[-0.012]$.
$1054.7 + 1059.6^{e^{\ddagger \#}} 2$	$2.0^{e} 5$	2701.36	2^{+}	1641.445	2 ⁺	(E2)	Mult.: $\alpha(K) \exp(-0.019)$. Mult.: $\alpha(K) \exp(-0.009)$.
1059.6 ^{e#} 2	2.0 ^e 5	2794.16	$(1,2)^+$	1734.344	3+		$\alpha(K)\exp\{0.009.$
1059.6 ^{e#} 2	$2.0^{e}.5$	3288.92	1+	2229.273	1+	(E2)	Mult.: $\alpha(K) \exp(0.009)$.
1070.0 4	0.4	2701.36	2+	1630.899	1+	()	
^x 1074.1 4	0.4						
1081.3 ^e 3	0.70 ^e 21	2937.55	$1^+, 2^+$	1856.783	0^{+}		
1081.3 ^e 3	0.70 ^e 21	3053.31	1^{+}	1972.279	$(2)^{+}$		
1100.3 5	0.7	3216.75	$(2)^{+}$	2116.547	0^{+}		
1116 <mark>8</mark> 1	0.4	2370.041	1+	1254.100	2+		
1121.4 ^e 2	2.5 ^e 6	2691.58	$(1,2)^+$	1570.277	1^{+}	(M1)	Mult.: α (K)exp=0.012 4.
1121.4 ^e 2	2.5 ^e 6	2763.094	$(1,2)^+$	1641.445	2^{+}	(M1)	Mult.: $\alpha(K)\exp=0.012$ 4.
1121.4 ^e 2	2.5 ^e 6	2978.212	1^{+}	1856.783	0^{+}	(M1)	Mult.: α (K)exp=0.012 4.
^x 1137.6 6	0.7				- 1		
1147.20 8	23.0 23	1515.176	0^+	367.943	2+	E2	Mult.: $\alpha(K)\exp=0.0041$ 6; $\gamma\gamma(\theta)$ in 1989Ah01, 1974Br02.
1158.3 7	1.1 4	2411.828	(2) ⁺	1254.100	21		

					¹⁹⁹ Hg(n, γ)) E=th:secondary	y 1974Br02 (co	ontinued)
						γ (²⁰⁰ Hg) (continued)	
E_{γ}^{\dagger}	$I_{\gamma}^{\dagger d}$	E _i (level)	\mathbf{J}_i^{π}	E_f	\mathbf{J}_f^{π}	Mult. ^a	$\delta^{\boldsymbol{b}}$	Comments
$ \begin{array}{r} 1163.5^{e} \ 3 \\ 1163.5^{e} \ 3 \\ 1163.5^{e} \ 3 \\ 1167.0 \ 7 \\ 1172.8 \ 5 \\ 1180.4 \ 4 \\ \end{array} $	2.8 ^e 6 2.8 ^e 6 2.8 ^e 6 0.8 1.0 4 1.0 4	2794.16 3353.05 3655.05 2114.356 3288.92 2127.932	$ \begin{array}{r} $	1630.899 2189.474 2491.425 947.243 2116.547 947.243	$ \begin{array}{c} 1^+ \\ 1^+ \\ (2)^+ \\ 4^+ \\ 0^+ \\ 4^+ \end{array} $	M1(+E2) M1(+E2) M1(+E2)		Mult.: $\alpha(K)\exp=0.0078$. Mult.: $\alpha(K)\exp=0.0078$. Mult.: $\alpha(K)\exp=0.0078$.
1181.9 [@] 8 1192.9 ^e 6 1192.9 ^e 6	0.8 ^e 0.8 ^e	2697.138 2763.094 3655.05	$(1,2)^+$ $(1,2)^+$ $(1)^+$	1515.176 1570.277 2461.83	0^+ 1^+ (1^+)			E_{γ} : Not observed by 1987Su15.
1202.35 7	37 4	1570.277	1+	367.943	2+	M1+E2	-0.43 ^c 4	δ: Other: +0.16 5 (1989Ah01). Mult.: α (K)exp=0.0071 13; γγ(θ) in 2011Be36, 1989Ah01, 1974Br02.
1205.75 7	41 4	1573.666	2+	367.943	2+	M1+E2	+0.26 ^C 2	Mult.: $\alpha(K)\exp=0.0077 \ 17 \ (1987Su15) \ and \ 0.0088 \ 17 \ (1974Br02); \ \gamma\gamma(\theta) \ in \ 2011Be36, \ 1989Ah01, \ 1974Br02.$ $\delta: \ Other: \pm 0.31.3 \ (1989Ah01).$
1225 1225.44 8	40 8	3568.6 1593.428	$1^+ 2^+$	2343.593 367.943	1 ⁺ ,2 ⁺ ,3 ⁺ 2 ⁺	M1+E2(+E0)	-2.48 +16-32	E_{γ} : From 2011Be36. Mult.: $\alpha(K) \exp=0.0068 \ I4 \ (1987Su15) \ and \ 0.0078 \ I0 \ (1974Br02) \ \gamma \gamma(\theta) \ in \ 2011Be36 \ 1989Ab01 \ 1974Br02$
1007		2401 425	(2)+	1054 100	24			δ : From 1989Ah01; Other: -0.09 <i>15</i> (2011Be36).
12370		2491.425	(2)	1254.100	2			
1247.3° 3	3.4° 7	2877.878	1+	1630.899	1+			
1247.3° 3	3.4 7	2978.212	1'	1730.927	2	50		
1254.14 <i>10</i> 1262.96 8	23.0 <i>21</i> 65 6	1254.100 1630.899	$\frac{2}{1^+}$	0.0 367.943	0 ⁺ 2 ⁺	E2 M1+E2	+0.12 ^c 5	Mult.: $\alpha(K)\exp=0.0033$ /. Mult.: $\alpha(K)\exp=0.0062$ 7; $\gamma\gamma(\theta)$ in 2011Be36, 1989Ah01, 1974Br02. δ : Other: ± 0.53 33 (1989Ah01)
1266.9.6	24	2296 34	1+	1029 346	0^{+}			0. Ould. (0.55.55 (1907401).
1273.43 10	33 3	1641.445	2+	367.943	2+	M1(+E2)	+0.02 3	Mult.: α (K)exp=0.0040 9 (1987Su15) and 0.0058 8 (1974Br02); $\gamma\gamma(\theta)$ in 2011Be36, 1989Ah01, 1974Br02. δ : Other: +0.047 +29-30 (1989Ah01).
1283.9 7 1291.1 6 1294.6 6 1318.0 6	1 3.3 10 1.7 1.9 6 2.5 0	2877.878 1659.007 3269.41 3053.31	1^+ 3^+ 1^+ 1^+ 1^+	1593.428 367.943 1974.337 1734.344	2^+ 2^+ $(3)^+$ 3^+ 2^+			
$1322.4 \ 3$ $1337.4^{e\#} \ 15$ $1337.4^{e\#} \ 15$ $1327.4^{e\#} \ 15$	3.5 9 1.8 ^e 1.8 ^e	3053.31 2853.00 2978.212	$(1,2)^+$ $(1,2)^+$ 1^+ 2^+	1730.927 1515.176 1641.445	2 ⁺ 0 ⁺ 2 ⁺	MI		Mult.: $\alpha(K) \exp = 0.007$.
1341.75 1347.1 ^e 5 1347.1 ^e 5	2.9 8 5.8 ^e 23 5.8 ^e 23	2288.94 2862.34 2978.212	$(1,2)^+$ 1^+	947.243 1515.176 1630.899	4' 0 ⁺ 1 ⁺			

From ENSDF

 $^{200}_{80}\text{Hg}_{120}$ -12

¹⁹⁹ Hg(\mathbf{n},γ) E=th:secondary 1974Br02 (continued)								
γ ⁽²⁰⁰ Hg) (continued)								
${\rm E_{\gamma}}^{\dagger}$	$I_{\gamma}^{\dagger d}$	E _i (level)	\mathbf{J}_i^{π}	$\mathbf{E}_f \qquad \mathbf{J}_f^{\pi}$	Mult. ^a	$\delta^{\boldsymbol{b}}$	Comments	
1350.4 2	12.5 13	1718.305	1+	367.943 2+	M1+E2	-0.036 24	Mult.: α (K)exp=0.0054 <i>10</i> ; $\gamma\gamma(\theta)$ in 2011Be36, 1989Ah01, 1974Br02.	
1363.2 2	18.0 22	1730.927	2+	367.943 2+	M1+E2	-0.32 +6-10	b: From 1989Ano1. Other: +0.05 5 in 2011Be30. Mult.: α (K)exp=0.0056 9 (1987Su15) and 0.0064 13 (1974Br02); $\gamma\gamma(\theta)$ in 2011Be36, 1989Ah01, 1974Br02. δ: Other: -0.38 15 (2011Be36).	
1366.8 ^e 7	1.8 ^e	1734.344	3+	367.943 2+				
1366.8 ^e 7	1.8 ^e	2937.55	$1^+, 2^+$	1570.277 1+				
1366.8 ^e 7	1.8 ^e	2960.14	1-	1593.428 2+				
1385.0 ^e 3	6.0 ^e 12	2331.777	2+	947.243 4+	(E2)		Mult.: α (K)exp=0.0040 <i>10</i> .	
1385.0 ^e 3	6.0 ^e 12	2639.924	1^{+}	1254.100 2+	(E2)		Mult.: α (K)exp=0.0040 <i>10</i> .	
1408.0 2	32 3	2978.212	1+	1570.277 1+	E2+M1	+1.44 +21-10	Mult.: $\alpha(K)\exp=0.0040 \ 6; \gamma\gamma(\theta) \ (1989Ah01).$ $\delta: \gamma\gamma(\theta) \ in \ 1989Ah01.$	
^x 1420.5 [@]	<1							
1422.4 ^e 3	1.5 ^e 5	2937.55	$1^+, 2^+$	1515.176 0+				
1422.4 ^e 3	1.5 ^e 5	3053.31	1^{+}	1630.899 1+				
^x 1426.4 6	1							
1432.2 ^{e#} 2	4.0 ^e 8	2461.83	(1^{+})	1029.346 0+	(M1)		Mult.: $\alpha(K) \exp = 0.0040$.	
1432.2 ^{e#} 2	4.0 ^e 8	3073.82	1+	1641.445 2+				
1432.2 <mark>e#</mark> 2	$4.0^{e}.8$	3288 92	1+	1856 783 0+	(M1)		Mult $\cdot \alpha(K) \exp(0.0040)$	
1442.5^{e} 10	≈1 ^e	2697.138	$(1.2)^+$	$1254.100 2^+$	(111)		Mult. u(1)exp=0.0010.	
1442.5^{e} 10	$\approx 1^{e}$	3073.82	1+	1630.899 1+				
1447.5 [#] 7	1.96	2701.36	2+	1254.100 2+				
1462 5 15	1.2	2978 212	1+	1515 176 0+				
1467.6.3	94 14	3186 33	1+	1718 305 1+	M1+E2		Mult : $\alpha(K) \exp(-0.036/10)$	
1479.6 15	0.65 20	1845.778	3+	367.943 2+	1111122		I_{α} : From adopted gammas.	
$1479.6 \frac{f8}{15}$ 15	$_{1}f$	3053 31	1+	1573 666 2+				
1488.5 4	10.0 20	1856.783	0^{+}	367.943 2+	E2		Mult.: $\alpha(K) \exp = 0.0028 \ 10: \gamma \gamma(\theta)$ in 1989Ah01, 1974Br02.	
1503.2 4	6.5 13	3073.82	1+	1570.277 1+	E2		Mult.: $\alpha(K) \exp = 0.0018$.	
1514.8 3	9.0 18	1882.860	2+	367.943 2+	M1+E2+E0	+0.12 5	Mult.: α (K)exp=0.0070 <i>17</i> ; $\gamma\gamma(\theta)$ (2011Be36,1989Ah01,1974Br02). δ : Other: +0.10 <i>4</i> (2011Be36) and +0.120 +43-47 (1989Ah01).	
1515.01 ^g		1515.176	0^{+}	0.0 0+	E0		Mult.: From 1987Su15; ce(K)(1515.0)/ce(K)(886.2)=0.068 3 (1987Su15).	
^x 1525.9 3	1.8 6							
1538.2 ^e 5	2.0 ^e 6	3053.31	1+	1515.176 0+				
1538.2 ^e 5	2.0^{e} 6	3269.41	1+	1730.927 2+				
1538.2 ^e 5	2.0 ^e 6	3655.05	$(1)^{+}$	2116.547 0+				
^x 1543.1 5	6.0 12							

 $^{200}_{80} Hg_{120}$ -13

L

From ENSDF

				19	⁹⁹ Hg(n	$,\gamma$) E=th:sec	ondary 1	974Br02 (continued)
γ ⁽²⁰⁰ Hg) (continued)								
E_{γ}^{\dagger}	$I_{\gamma}^{\dagger d}$	E _i (level)	\mathbf{J}_i^π	E_f	\mathbf{J}_f^{π}	Mult. ^a	$\delta^{\boldsymbol{b}}$	Comments
^x 1546.1 7 ^x 1550.1 6 ^x 1553.7 7	2.5 3.0 9 2.5							
1557.7 3	10.0 20	3216.75	$(2)^{+}$	1659.007	3+			Mult.: α (K)exp=0.0037.
1557.7° 3	10.0 ^e 20	3288.92	1+	1730.927	2+	M1		Mult.: α (K)exp=0.0037.
1570.45 <i>15</i>	93 10	15/0.277	1'	0.0	0'	MI		Mult.: $\alpha(\mathbf{K})\exp=0.0036$ 4.
1604.5 2	12.0 18	1972.279	(2)+	367.943	2+	M1+E2	+0.15 ^c 4	Mult.: α (K)exp=0.0032 8; $\gamma\gamma(\theta)$ (2011Be36,1989Ah01,1974Br02). δ : Other: +0.87 +18-14 (1989Ah01).
1610.9 ^e 6	2.4 ^e 7	2639.924	1^{+}	1029.346	0^+			
1610.9 ^e 6	2.4 ^e 8	3269.41	1+	1659.007	3+			
1623.5 ^{e‡#} 3	6.7 ^e 14	2877.878	1^{+}	1254.100	2^{+}			α (K)exp<0.003.
1623.5 ^{e‡#} 3	6.7 ^e 14	3216.75	$(2)^{+}$	1593.428	2+			α (K)exp<0.003.
1630.7 <i>4</i>	5.6 12	1630.899	1+	0.0	0^{+}	(M1)		Mult.: α (K)exp>0.0018.
~1633.6 /	2.9 12	2260.41		1 (20,000	1 ±			
1638.3" 3	3.5 9	3269.41	1' 1+	1641 445	1' 2+			
1658.2.3	1.90	3288.92	1 1+	1630 899	2 1+			
$1667.8^{@8}$	1110	2697 138	$(1 2)^+$	1029 346	0+			E · Not observed by 1987Su15
$x_{1669} 6^{\#} 15$	1	2077.150	(1,2)	1029.010	Ū			
1676.3 3	3.0 8	3269.41	1^{+}	1593.428	2+			
1681.1 [#] 15	1.9	3655.05	$(1)^{+}$	1974.337	$(3)^{+}$			
x1685.5 10	2.8 12				(-)			
1693.13 14	165 17	2061.255	1+	367.943	2+	M1(+E2)	-0.03 ^c 2	Mult.: α (K)exp=0.0031 4; $\gamma\gamma(\theta)$ (2011Be36,1989Ah01,1974Br02). δ : Other: +0.003 13 (1989Ah01).
1699.1 <i>10</i>	1	3269.41	1^+	1570.277	1^+			(11) 0.0015
1706.6 3	7.6 12	20/4.333	(2) ⁺	367.943	2+ 2+			$\alpha(\mathbf{K})\exp(-0.0017)$.
1711.75 1715.28 10	4.8 12 ≈1	3288 92	1 1 ⁺	1041.445	$\frac{2}{2^{+}}$			
1718.6.4	$^{\sim 1}_{234}$	1718.305	1+	0.0	0^{+}	(M1)		Mult: $\alpha(\mathbf{K}) \exp \{0.0027\}$
1722.2 ^e 6	8.2 ^e 21	3353.05	1+	1630.899	1+	()		
1722.2 ^e 6	8.2 ^e 21	3452.96	$(1)^{+}$	1730.927	2^{+}			
1733.7 <mark>8</mark> 10	1	2763.094	$(1,2)^+$	1029.346	0^+			
x1740.28 15	1	0114075	2+	0.000	a +			
1745.98 15	$\frac{1}{2}$	2114.356	3 ⁺	367.943	2 ⁺			
1/34.0° / 1754.6° 7	2.6° 11 2.6° 11	2701.30	2 · 1+	947.243	4 · 0+			
1759.0°	2.0° 11 5.50	J207.41 2126 855	1 2+	267 042	2+	$M1(\pm E2)$		Mult: $\alpha(K) \approx c 0.0011$
$1750.2^{\pm \pm}$	5.5°	2120.000	$(2, 2)^+$	267 042	∠ 2+	$M1(\pm E2)$		$w_{u}(\mathbf{x}) = \sqrt{K} = \sqrt{0.0011}$
1/59.3	5.50	2127.932	$(2,3)^{+}$	367.943	2'	MI(+E2)		Mult.: $\alpha(\mathbf{K})\exp(0.0011)$.

$^{200}_{80} Hg_{120}$ -14

From ENSDF

 $^{200}_{80}\mathrm{Hg}_{120}$ -14

L

¹⁹⁹ Hg(\mathbf{n},γ) E=th:secondary 1974Br02 (continued)									
γ ⁽²⁰⁰ Hg) (continued)									
E_{γ}^{\dagger}	$I_{\gamma}^{\dagger d}$	E _i (level)	\mathbf{J}_i^{π}	E_{f}	\mathbf{J}_{f}^{π}	Mult. ^a	$\delta^{\boldsymbol{b}}$	Comments	
1771.9 7	2.9 12	3655.05	$(1)^{+}$	1882.860	2+				
1783.3 <i>10</i> <i>x</i> 1796.0 <i>7</i>	1.5 2	3353.05	1+	1570.277	1+				
1799.2 5	3.3 10	3053.31	1+	1254.100	2^{+}				
1811.2 4	3.0 6	3452.96	$(1)^+$	1641.445	2+				
1822.3 ^e 7	2.1 ^e 7	2189.474	1+	367.943	2+				
1822.3° 7	2.1° 7	3452.96	$(1)^{+}$	1630.899	1+				
^x 1825.9 5 ^x 1829.8 7	3.3 9 1.8 7								
1838.1 [#] 15	1.5	3353.05	1+	1515.176	0^+				
1857.4 [@]		1856.783	0^{+}	0.0	0^+	E0		$ce(K)(1857.4)/ce(K)(886.2)=0.19 \ 1 \ (1987Su15).$	
^x 1860.4 [#] 3	4.7								
1879.3 ^{e‡#} 3	1.2 ^e	2246.446	$(1,2)^+$	367.943	2^{+}				
1879.3 ^{e‡#} 3	1.2 ^e	3655.05	$(1)^{+}$	1775.564	3+				
1906.2 3	5.6 9	2274.227	$(2)^{+}$	367.943	2+	E2		Mult.: $\alpha(K)$ exp=0.0011; $\gamma\gamma(\theta)$ in 1974Br02.	
1921.1 3	4.4 7	2288.94	2+	367.943	2+	(E2)		Mult.: $\alpha(\mathbf{K})\exp(-0.0014)$.	
1928.2 3 ×1957.6 7	1.90	2290.54	1	307.943	2.				
1963.5 4	2.6 6	2331.777	2+	367.943	2^{+}				
^x 1970.9 7	1.3								
1975.8 <i>3</i>	3.9 8	2343.593	$1^+, 2^+, 3^+$	367.943	2^{+}	M1(+E2)		Mult.: $\alpha(K) \exp = 0.0038 \ 16.$	
^x 1984.5 [#] 7	1.6 6								
2002.1 2	77 8	2370.041	1+	367.943	2+	M1(+E2)	-0.014 19	Mult.: $\alpha(K) \exp=0.0018 \ 3; \gamma\gamma(\theta) \ (1989Ah01, 1974Br02).$	
2020.6 7	3.4 7	2388.69	$(1,2,3)^+$	367.943	2+	M1+E2		Mult.: $\alpha(K) \exp[=0.0018.$	
^x 2032.6 4	2.0 6								
2044.2 ^e 5	2.0 ^e 6	2411.828	$(2)^{+}$	367.943	2+				
2044.2 ^e 5	2.0 ^e 6	3073.82	1+	1029.346	0^{+}				
x2063.7 6	1.4								
2082.97	1.7	2461.83	(1^{+})	367 0/3	2^{+}			$\alpha(K) \exp(-0.0015)$	
x2107.8 3	4.5 9	2401.05	(1)	507.945	2			$\alpha(K) \exp{(0.0015)}$	
2116.85		2116.547	0^{+}	0.0	0^+	E0		$\alpha(K)\exp(2116.8)/ce(K)(886.2)=0.035 \ 3 \ (1987Su15).$	
^x 2118.4 [@]	<1.5								
2123.9 7	4.2 9	2491.425	$(2)^{+}$	367.943	2^{+}	(E2)		Mult.: α (K)exp=0.0012.	
2139.7 [#] 3	5.0 10	3655.05	$(1)^{+}$	1515.176	0^+			α (K)exp<0.0013.	
^x 2161.4 7	3.5 13								
^2180.8 5	5.0 10	2100 474	1+	0.0	0+	E2 M1		Mult.: $\alpha(K) \exp = 0.0013$.	
2188./ 0	4.3 9	2189.474	1	0.0	0.	IVII		Mult.: $\alpha(\mathbf{K})\exp=0.0032$ 10.	

From ENSDF

					¹⁹⁹ Hg (n,γ) E=th:secondary		th:secondary	1974Br02 (continued)
							γ (²⁰⁰ Hg) (cor	ntinued)
${\rm E_{\gamma}}^{\dagger}$	$_{\mathrm{I}_{\gamma}}^{\dagger d}$	E _i (level)	\mathbf{J}_i^{π}	E_f	\mathbf{J}_f^{π}	Mult. ^a	$\delta^{\boldsymbol{b}}$	Comments
^x 2194.4 5	2.2							
^x 2204.6 10	1.5 6							
2240.6 7	3.0 9	3269.41	1+	1029.346	0^{+}			
2246 ⁸ 2		2246.446	$(1,2)^+$	0.0	0^{+}			
*2251.4 10	4.8 17	2200.02	a ±	1020 246	0±	0.01		
2259.5 5	5.6 12	3288.92	1 ' 1 +	1029.346	$0'_{2^+}$	(MI)	0.42 . 6 5	Mult.: $\alpha(K) \exp[=0.0013 3]$.
22/1.5 4	19.5	2039.924	1	307.943	2	MIT+E2	-0.43 +0-3	Mult.: $\alpha(\mathbf{K})\exp=0.0011/2; \gamma\gamma(\theta)$ (1989An01).
x2283 0 4	6113					(F1)		$Mult : \alpha(K) \exp{-\alpha 0.006}$
2289.6 7	15	2288 94	2^{+}	0.0	0^{+}	(L1)		Mult. u(R)cxp <0.0000.
2296.3 3	9.5 10	2296.34	1+	0.0	0^{+}	M1		Mult.: $\alpha(K) \exp = 0.0015$ 5.
^x 2304.7 7	1.1 4							
2323.5 ^{e#} 4	3.5 ^e 9	2691.58	$(1.2)^{+}$	367.943	2+			$\alpha(K) \exp = 0.0006.$
$23235^{e\#}4$	3 5 9	3353.05	1+	1029 346	0+			$\alpha(\mathbf{K}) = 0.0006$
x2346.5.6	2.3.6	5555.05	1	1027.510	0			u(i) u (i)
x2365.2 7	1.6 5							
2370.0 3	3.3 7	2370.041	1+	0.0	0^+	(M1)		Mult.: α (K)exp=0.0012.
^x 2401.9 4	2.4 5					E2		Mult.: $\alpha(K) \exp = 0.0009 \ 4$.
2423.7 [#] 7	3.2 10	3452.96	$(1)^{+}$	1029.346	0^+			α (K)exp<0.0006.
2442.6 [#] 3	6.2 10	2442.71?	1-	0.0	0^{+}	E1		Mult.: α (K)exp=0.0002.
^x 2449.8 5	1.6							
2462.6 ^{e#} 15	1.9 <mark>°</mark> 8	2461.83	(1^{+})	0.0	0^{+}			$\alpha(K) \exp = 0.0012.$
2462.6 <mark>e#</mark> 15	19 ⁶ 8	3492.60	1+	1029 346	0^{+}			$\alpha(K) \exp = 0.0012$
^x 2468.0 15	1.6	5192.00	1	1029.510	0			
^x 2475.8 15	2							
^x 2480.2 15	2.0 7							
2485.3 15	2.0 7	2853.00	$(1,2)^+$	367.943	2^{+}	M1+E2		Mult.: $\alpha(K) \exp = 0.0011$.
^x 2502.6 [#] 15	1.7							
^x 2513.1 7	2.0 6							
^x 2524.3 7	2.0 7							
x2528.7 4	4.6 7					E1		Mult.: $\alpha(K) \exp = 0.0005 \ 2.$
*2538.0 5	2.57							
^x 2544.5 [#] 7	2.5 8							
x2559.0 10	1.3					F 1		
2304.8 /	2.98 120	2037 55	1+ 2+	367 0/2	2+	EI		NULL: $\alpha(\mathbf{K})\exp=0.0004$. $\alpha(\mathbf{K})\exp=0.0003$
x2509.1 3	4.29 347	2751.33	1,2	307.943	2	F1		$\alpha(\mathbf{K}) \propto p < 0.0003$
2590.5 3	6.1 6	2590.86	1-	0.0	0^{+}	E1		Mult: $\alpha(K) \exp(0.0002)$.
x2606.7 10	1.7 6				-			

 $^{200}_{80}\text{Hg}_{120}$ -16

	¹⁹⁹ Hg(\mathbf{n},γ) E=th:secondary 1974Br02 (continued)									
γ ⁽²⁰⁰ Hg) (continued)										
E_{γ}^{\dagger}	$I_{\gamma}^{\dagger d}$	E _i (level)	J^{π}	Ef	J^{π}_{c}	Mult. ^a		Comments		
2611.0 7	3.0 6	2978.212	$\frac{l}{1^+}$	367.943	$\frac{J}{2^{+}}$					
x2620.9 4	3.5 9 2.6 8	3655.05	$(1)^{+}$	1020 346	0+					
2639.9 2	33 4	2639.924	1^{+}	0.0	0^{+}	M1	Mult.: $\alpha(K) \exp = 0.00105 \ 15$.			
^x 2648.9 5 ^x 2695.0 15	3.0 6 1.5									
x2699.3 15	1.5									
x2704.6 3 x2727.2 3	1.8 4.0 <i>10</i>									
x2735.8 5	2.7 6									
^x 2742.78 7 ^x 2756.2 15	1.4 3.2									
2764.0 15	1.8	2763.094	$(1,2)^+$	0.0	0^+					
2794.5# 4 *2806 5 4	2.4 8 2 4 8	2794.16	$(1,2)^+$	0.0	0^{+}					
2818.6 3	12.0 12	3186.33	1+	367.943	2^+	E2(+M1)	Mult.: $\alpha(K) \exp = 0.00063 \ 15$.			
$x^{2827.4}$ [#] 10	2.8 9									
×2831.8" 10 2847.3 6	2.8 9 4.2 9	2847.62	1-	0.0	0^{+}	E1	Mult.: $\alpha(K) \exp < 0.0003$.			
2853.8 10	1.4	2853.00	$(1,2)^+$	0.0	0^+					
2862.4 15 ^x 2872.7 10	0.5 1.4	2862.34	(1,2)	0.0	0'					
^x 2880.7 10	2.8 10					F1	M h (17) -0.0004			
2901.3 3	5.5 10 14.0 <i>14</i>	3269.41	1^{+}	367.943	2^{+}	E1 E2(+M1)	Mult.: $\alpha(K) \exp\{-0.0004$. Mult.: $\alpha(K) \exp\{-0.00067 \ 10$.			
2921.1 <i>3</i>	16.0 <i>16</i>	3288.92	1+	367.943	2+	E2(+M1)	Mult.: $\alpha(K)$ exp=0.00064 17.			
2928.0 10 2937.2 10	2.99 1.5	2937.55	1+,2+	0.0	0^+					
x2953.8 10 2960 2 3	2.06	2960-14	1-	0.0	0^{+}	F1	Mult $\cdot \alpha(\mathbf{K}) \exp < 0.00013$			
2978.5 6	3.0 6	2978.212	1+	0.0	0^{+}		Mun. a(R)0xp<0.00013.			
^x 2985.8 <i>3</i> ^x 2993 8 5	3.5 7 2.0 5					M1	Mult.: α (K)exp=0.0008.			
x3033.6 4	10.4 21					E1	Mult.: α (K)exp<0.00016.			
x3051.1 8 3074.2 6	6.7 <i>14</i> 5.0 <i>10</i>	3073.82	1+	0.0	0^{+}	E2 M1	Mult.: α (K)exp=0.00058 25. Mult.: α (K)exp=0.00074 22.			
x3093.1 12	2.9 9	5075.02	1	0.0	0					
x3112.2 10 3185.8 4	3.6 <i>11</i> 30 <i>3</i>	3186.33	1+	0.0	0^{+}	M1	Mult.: $\alpha(K) \exp (0.00072, 10)$			
3216.9 8	9.3 19	3216.75	$(2)^+$	0.0	$\ddot{0}^+$		$\alpha(K)\exp=0.00058\ 20.$			

From ENSDF

L

$^{200}_{80}$ H	
∃g ₁₂	
0-18	

¹⁹⁹Hg(\mathbf{n},γ) E=th:secondary **1974Br02** (continued)

$\gamma(^{200}\text{Hg})$ (continued)

		$\gamma(^{\circ\circ\circ}\text{Hg})$ (continued)								
E_{γ}^{\dagger}	$I_{\gamma}^{\dagger d}$	E _i (level)	\mathbf{J}_i^{π}	E_f	\mathbf{J}_{f}^{π}	Mult. ^a	Comments			
x3263.3 15	2.6									
3269.4 6 3288 9 1	6.7 <i>14</i>	3269.41	1+ 1+	0.0	0^+	M1 M1	Mult.: $\alpha(K)\exp=0.0010 \ 3$.			
5200.9 4	52 4	5200.92	1	0.0	0	1411	Mult. $u(R)exp=0.0007672$.			
 [†] From 1974 precise γ-r. [‡] Possible in [#] Unresolved [@] From 1971 ^{&} Seen only [@] E = (W) 	 [†] From 1974Br02 unless otherwise stated. For Eγ<2 MeV cryst. data, for Eγ>2 MeV Ge(Li) data. ΔIγ assumed 40% if not given explicitly by the authors. For other precise γ-ray energies see 1979Br25. [‡] Possible impurity line. [#] Unresolved multiplet. [@] From 1971Ma10. ^{&} Seen only in resonance capture. 									
^{<i>a</i>} From $\alpha(K)$	exp in 197	74Br02, ded	uced u	ising I	lce of	f 1969Sc0	3 for Ey<1 MeV and Ice of 1971Ma10 for Ey>1 MeV. Iy from 1974Br02 were normalized to $\alpha(K)$ for			
b From $\gamma\gamma(\theta)$) in $1989A$	a pure E_2 . 1 h01 unless	other	wise s	piac tated	$ed \gamma s, the$	ese assignments should be considered tentative.			
^c From $\gamma\gamma(\theta$) in 2011E	Be36.	ouioi		luiou	•				
^d For intensi	ty per 100	neutron cap	otures,	multi	ply b	y 0.065 1	0.			
^e Multiply p	laced with	undivided i	ntensi	ty.						
^f Multiply p	laced with	intensity su	iitably	divide	ed.					
^g Placement	^g Placement of transition in the level scheme is uncertain.									
γ ray not p	γ ray not placed in level scheme.									

 $^{200}_{\ 80} Hg_{120}$

 $^{200}_{80}Hg_{120}$

$\underline{Level \ Scheme \ (continued)}$ Intensities: I₇ per 100 neutron captures

& Multiply placed: undivided intensity given @ Multiply placed: intensity suitably divided Legend

	$I_{\gamma} < 2\% \times I_{\gamma}^{max}$
	$I_{\gamma} < 10\% \times I_{\gamma}^{max}$
	$I_{\gamma} > 10\% \times I_{\gamma}^{max}$
►	γ Decay (Uncertain)

 $^{200}_{\ 80} Hg_{120}$

 $^{200}_{80}\text{Hg}_{120}$

²⁰⁰₈₀Hg₁₂₀

 $^{200}_{80}$ Hg $_{120}$ -27

From ENSDF

 $^{200}_{80}\text{Hg}_{120}$ -28

From ENSDF

 $^{200}_{80}\mathrm{Hg}_{120}$ -28

 $^{200}_{80}\mathrm{Hg}_{120}\text{--}29$

 $^{200}_{80}\mathrm{Hg}_{120}\text{--}29$

From ENSDF

Level Scheme (continued)

Intensities: I_{γ} per 100 neutron captures	Legend			
& Multiply placed: undivided intensity given @ Multiply placed: intensity suitably divided	$\begin{array}{c c} & & I_{\gamma} < 2\% \times I_{\gamma}^{max} \\ \hline & & I_{\gamma} < 10\% \times I_{\gamma}^{max} \\ \hline & & I_{\gamma} > 10\% \times I_{\gamma}^{max} \end{array}$			
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	stable			

 $^{200}_{\ 80} Hg_{120}$