Coulomb excitation 1979Bo16,1981Gu07,1991Li03

		History	
Туре	Author	Citation	Literature Cutoff Date
Full Evaluation	F. G. Kondev	NDS 192,1 (2023)	1-Aug-2023

1979Bo16:E(α)=11-15 MeV, E(¹⁶O)=56 MeV, Winther-deBoer analysis, γ yield from natural Hg relative to ¹⁹⁸Hg. 1981Gu07: 95.7% ²⁰⁰Hg, 5 MeV/Amu ²⁰⁸Pb beam; γ -²⁰⁸Pb coin. Ge(Li) and avalanche detectors, $\gamma(\theta)$; Winther-deBoer analysis. 1991Li03: E(¹²C)=54,55 MeV, 88.9% ²⁰⁰Hg; mag spect. Others: 1995Br34, 1980Sp05, 1974Do01, 1970Ka09.

²⁰⁰Hg Levels

E(level) [†]	J ^{π‡}	T _{1/2} #	Comments					
0.0	0^{+}	stable						
367.943 10	2^{+}	46.4 ps 4	B(E2)↑=0.853 7 (1980Sp05)					
			Q=+1.10 10					
			$\mu = +0.65 5$					
			B(E2)↑: Others: 0.853 15 in 1979Bo16, 0.95 11 in 1970Ka09 and 0.855 in 1981Gu07.					
			Q: Weighted average of +1.07 19 in 1980Sp05 and +1.11 11 in 1979Bo16.					
			μ : From g=+0.326 26 in 1995Br34. Others: g=0.40 7 (1974Do01, but value revised in 1986Ko02), g=0.31 8 (1970Ka09, but value revised in 1986Ko02), g=0.29 6 in 1986Ko02,					
0.47.000.10	4	2.21 1.4	normalized to $g(2^+)=0.52$ in ¹⁹⁶ Hg.					
947.239 18	4'	3.21 ps 14	B(E2) ⁺ =0.477 21					
			μ =+1.02 1/					
			B(E2); Weighted average of 0.466 4/ (19/9B016) and 0.479 23 (1981Gu07).					
1020 251 10	0+		μ : From g=+0.254 43 in 1995Br34.					
1029.331 19	0.	25 7	D(T2)A 0.0000 15 (1070D 16)					
1254.102 18	2.	3.5 ps /	B(E2) = 0.0080 IS (19/9B016) $B(E2)^{*}(2^{+} + 2^{+}) = 0.015 IS (1070B - 16)$					
1572 ((7.22	2+		B(E2) (2 10 2)=0.015 3 (1979B010).					
15/5.00/25	Z ·	0.70 (
1/06./3 9	6.	0.70 ps 6	B(E2) = 0.464 (1981Gu07)					
1851.48 10	5							
1962.62 11	7	25.1 24						
2610.42 10	3-	25.1 ps 24	$B(E3)\uparrow=0.41$ 4 (1991L103)					
2680.1 <i>3</i>	8+	0.19 ps 4	B(E2)↑=0.38 8 (1981Gu07)					

 † From a least-squares fit to Ey.

[‡] From Adopted Levels.

[#] From B(E2) \uparrow ,B(E3) \uparrow and the corresponding branching ratios.

E_i (level)	\mathbf{J}_i^{π}	${\rm E}_{\gamma}^{\dagger}$	I_{γ}^{\dagger}	E_f	\mathbf{J}_{f}^{π}	Mult. [†]	α^{\ddagger}	Comments
367.943	2+	367.942 10	100	0.0	0+	E2	0.0594 8	$ \begin{array}{c} \alpha(\mathrm{K}) = 0.0388 \ 5; \ \alpha(\mathrm{L}) = 0.01553 \ 22; \\ \alpha(\mathrm{M}) = 0.00389 \ 5 \\ \alpha(\mathrm{N}) = 0.000970 \ 14; \ \alpha(\mathrm{O}) = 0.0001694 \ 24; \end{array} $
947.239	4+	579.300 17	100	367.943	2+	E2	0.01905 27	$\alpha(P)=5.08\times10^{-6} 7$ $\alpha(K)=0.01424 \ 20; \ \alpha(L)=0.00365 \ 5;$ $\alpha(M)=0.000888 \ 12$
029.351	0^{+}	661.36 <i>3</i>	100	367.943	2+	E2	0.01416 20	α (N)=0.0002217 31; α (O)=3.99×10 ⁻⁵ 6; α (P)=1.891×10 ⁻⁶ 26 α (K)=0.01085 15; α (L)=0.002524 35;
					_			α (M)=0.000609 9 α (N)=0.0001520 21; α (O)=2.76×10 ⁻⁵ 4; α (D)=1.420×10 ⁻⁶ 20
254.102	2+	224.750 6	0.37 4	1029.351	0^+	E2	0.264 4	$\alpha(F) = 1.439 \times 10^{-120}$ $\alpha(K) = 0.1276 \ 18; \ \alpha(L) = 0.1021 \ 14;$

 $\gamma(^{200}{\rm Hg})$

Continued on next page (footnotes at end of table)

			Coulom	o excitation	1	979Bo16,198	81Gu07,19911	<u>d)</u>	
E _i (level)	\mathbf{J}_i^{π}	${\rm E_{\gamma}}^{\dagger}$	I_{γ}^{\dagger}	E_f	\mathbf{J}_f^{π}	Mult. [†]	δ^{\dagger}	α^{\ddagger}	Comments
1254.102 2+	2+	306.863 11	0.24 2	947.239	4+	E2		0.0996 14	$\begin{array}{c} \alpha(\mathrm{M}) = 0.0263 \ 4 \\ \alpha(\mathrm{N}) = 0.00653 \ 9; \\ \alpha(\mathrm{O}) = 0.001109 \ 16; \\ \alpha(\mathrm{P}) = 1.603 \times 10^{-5} \ 22 \\ \alpha(\mathrm{K}) = 0.0597 \ 8; \\ \alpha(\mathrm{L}) = 0.0300 \ 4; \\ \alpha(\mathrm{M}) = 0.00760 \ 11 \\ \alpha(\mathrm{N}) = 0.001892 \ 26; \\ \alpha(\mathrm{O}) = 0.000327 \ 5; \end{array}$
		886.20 4	100 8	367.943	2+	E2+M1	-1.79 17	0.0108 5	α (P)=7.70×10 ⁻⁶ <i>11</i> α (K)=0.0087 <i>4</i> ; α (L)=0.00158 <i>6</i> ;
		1254.14 10	45 4	0.0	0+	E2		0.00391 5	$\alpha(\text{M})=0.000370 \ 15$ $\alpha(\text{M})=9.3\times10^{-5} \ 4;$ $\alpha(\text{O})=1.73\times10^{-5} \ 7;$ $\alpha(\text{P})=1.18\times10^{-6} \ 6$ $\alpha(\text{K})=0.00318 \ 4;$ $\alpha(\text{L})=0.0001520 \ 8;$ $\alpha(\text{M})=0.0001290 \ 18$ $\alpha(\text{N})=3.23\times10^{-5} \ 5;$ $\alpha(\text{O})=6.02\times10^{-6} \ 8;$
1573.667 2	2+	319.566 <i>15</i>	0.20 3	1254.102	2+	(M1+E2)		0.20 11	$\alpha(P) = 4.15 \times 10^{-7} 6;$ $\alpha(IPF) = 9.75 \times 10^{-6} 14$ $\alpha(K) = 0.15 10; \alpha(L) = 0.034$ $8; \alpha(M) = 0.0081 16$ $\alpha(N) = 0.0020 4;$ $\alpha(O) = 0.00037 9;$
		544.21 7	0.24 5	1029.351	0+	[E2]		0.02201 <i>31</i>	$\alpha(P)=2.1\times10^{-5} I4$ $\alpha(K)=0.01625 23;$ $\alpha(L)=0.00438 6;$ $\alpha(M)=0.001070 I5$ $\alpha(N)=0.000267 4;$
		626.52 10	0.32 10	947.239	4+	[E2]		0.01596 22	$\alpha(O)=4.79\times10^{-3} 7;$ $\alpha(P)=2.156\times10^{-6} 30$ $\alpha(K)=0.01211 17;$ $\alpha(L)=0.00293 4;$ $\alpha(M)=0.000708 10$ $\alpha(N)=0.0001769 25;$ $\alpha(O)=3.20\times10^{-5} 4;$
		1205.75 7	100 <i>10</i>	367.943	2+	M1+E2	+0.252 19	0.00917 <i>14</i>	$\alpha(P)=1.607\times10^{-6} 23$ $\alpha(K)=0.00758 11;$ $\alpha(L)=0.001217 18;$ $\alpha(M)=0.000282 4$ $\alpha(N)=7.06\times10^{-5} 10;$ $\alpha(O)=1.338\times10^{-5} 20;$ $\alpha(P)=1.040\times10^{-6} 16;$
		1573.6 10	0.17 9	0.0	0+	[E2]		0.00264 <i>4</i>	$\alpha(\text{IPF})=7.43\times10^{-6} \ 11$ $\alpha(\text{K})=0.002105 \ 30;$ $\alpha(\text{L})=0.000346 \ 5;$ $\alpha(\text{M})=8.03\times10^{-5} \ 11$ $\alpha(\text{N})=2.009\times10^{-5} \ 28;$ $\alpha(\text{O})=3.77\times10^{-6} \ 5;$ $\alpha(\text{P})=2.73\times10^{-7} \ 4;$ $\alpha(\text{IPF})=8.93\times10^{-5} \ 13$

			Coulomb excitation			1979Bo16,1981Gu07,1991Li03 (continued)			
						γ (²⁰⁰ Hg	g) (continued)		
E _i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\dagger}	E_f	\mathbf{J}_{f}^{π}	Mult. [†]	α^{\ddagger}	Comments	
1706.73	6+	759.50 10	100	947.239	4+	E2	0.01053 15	$\alpha(K)=0.00823 \ 12; \ \alpha(L)=0.001757 \ 25; \alpha(M)=0.000420 \ 6 \alpha(N)=0.0001050 \ 15; \ \alpha(O)=1.920\times10^{-5} 27; \ \alpha(D)=1.080\times10^{-6} \ 15$	
1851.48	5-	904.23 12	100	947.239	4+	E1	0.00277 4	$\alpha(K) = 0.002316 \ 32; \ \alpha(L) = 0.000349 \ 5; \alpha(M) = 8.00 \times 10^{-5} \ 11 \alpha(N) = 1.997 \times 10^{-5} \ 28; \ \alpha(O) = 3.75 \times 10^{-6} 5; \ \alpha(P) = 2.80 \times 10^{-7} \ 4$	
1962.62	7-	111.12 12	2.6 8	1851.48	5-	E2	3.58 5	$\alpha(K)=0.560\ 8;\ \alpha(L)=2.257\ 34;\ \alpha(M)=0.590\ 9$ $\alpha(N)=0.1463\ 22;\ \alpha(O)=0.0243\ 4;\ \alpha(P)=8\ 93\times10^{-5}\ 13$	
		255.87 8	100 8	1706.73	6+	E1	0.0405 6	$\alpha(K) = 0.0333 5; \alpha(L) = 0.00558 8; \alpha(M) = 0.001295 18 \alpha(N) = 0.000322 5; \alpha(O) = 5.89 \times 10^{-5} 8; \alpha(P) = 3.68 \times 10^{-6} 5$	
2610.42	3-	2610.4 <i>1</i>	100	0.0	0+	(E3)	2.24×10 ⁻³ 3	$\alpha(K) = 0.001539 \ 22; \ \alpha(L) = 0.000256 \ 4; \alpha(M) = 5.95 \times 10^{-5} \ 8 \alpha(N) = 1.490 \times 10^{-5} \ 21; \ \alpha(O) = 2.81 \times 10^{-6} 4; \ \alpha(P) = 2.076 \times 10^{-7} \ 29; \alpha(PF) = 0.000371 \ 5$	
2680.1	8+	716.8 5	18 6	1962.62	7-	[E1]	0.00430 6	$\alpha(\mathbf{M}) = 0.0005775 (\mathbf{M}) = 0.000548 \ 8;$ $\alpha(\mathbf{M}) = 0.0001260 \ 18 \ \alpha(\mathbf{N}) = 3.14 \times 10^{-5} \ 4; \ \alpha(\mathbf{O}) = 5.89 \times 10^{-6} \ 8;$ $\alpha(\mathbf{P}) = 4.29 \times 10^{-7} \ 6$	
		973.6 3	100 14	1706.73	6+	E2	0.00636 9	$\begin{aligned} &\alpha(\mathrm{K}) = 0.00510\ 7;\ \alpha(\mathrm{L}) = 0.000965\ 14;\\ &\alpha(\mathrm{M}) = 0.0002278\ 32\\ &\alpha(\mathrm{N}) = 5.70 \times 10^{-5}\ 8;\ \alpha(\mathrm{O}) = 1.053 \times 10^{-5}\\ &15;\ \alpha(\mathrm{P}) = 6.71 \times 10^{-7}\ 9 \end{aligned}$	

[†] From adopted gammas.[‡] Additional information 1.

Coulomb excitation 1979Bo16,1981Gu07,1991Li03

Level Scheme

Intensities: Relative photon branching from each level

