¹⁹⁸Pt(⁹Be,α3nγ) **1999Go21**

		History	
Туре	Author	Citation	Literature Cutoff Date
Full Evaluation	F. G. Kondev	NDS 192,1 (2023)	1-Aug-2023

1999Go21: ²⁰⁰Hg populated in ¹⁹⁸Pt(⁹Be, α 3n γ) reaction. Beam: ⁹Be at E=60 MeV; Target: 18 mg/cm² thick ¹⁹⁸Pt; Detectors:

 8π spectrometer consisting of 20 Ge BGO Compton-shielded detectors, inner ball of 71 BGO scintillation detectors; Measured $\gamma\gamma$, E γ , I γ , $\gamma\gamma(\theta)$ (DCO); Deduced: level scheme, J^{π} .

Other: 2021Su02, where ²⁰⁰Hg was populated in ¹⁹⁷Au(²⁰⁷Pb,x γ) reaction. E(²⁰⁹Bi)=1450 MeV and E(²⁰⁷Pb)=1430 MeV beams from ATLAS-ANL facility. ¹⁹⁷Au target was 50 mg/cm² thick in both the experiments. Gammasphere array with 100

beams from ATLAS-ANL facility. ¹⁹⁷Au target was 50 mg/cm² thick in both the experiments. Gammasphere array with 100 Compton-suppressed HPGe detectors. Measured half-life of the 3215 level by $\gamma\gamma(\Delta t)$ centroid-shift method.

²⁰⁰Hg Levels

E(level) [†]	$J^{\pi \ddagger}$	T _{1/2}	Comments
0.0#	0^{+}		
368.0 [#] 3	2+		
947.3 [#] 5	4+		
1706.7 [#] 5	6+		
1851.7 ^{&} 5	5-		
1962.5 <mark>&</mark> 6	7-		
2049.0 [@] 6	6-		
2135.2 [@] 6	8-		
2143.6 ^{&} 6	9-		
2298.6 6	(8)		
2522.5 [@] 6	10-		
2596.9 6	(9)		
2641.4 ^{a} 7	11-		
2680.0 [#] 6	8 ⁺		
3120.740	10		
3122.8 - 7	12	1.0 m 2	Thus, from $207a$, $408a$ (At) controid shift mathed in 20218002
3213.0 7	12	1.0 118 5	$1_{1/2}$. 110111 597 y-498 y(Δt) centroid-sinit method in 20215002.
$3611.6^{a}.7$	$13 \\ 14^+$		
3672.8 8	14^{+}		
3872.7 7	(14^{+})		
4025.1 [@] 9	14-		
4094.4 8	(15)		
4195.8" 8	16^+		
4290.4 0	10		
4445.7 8	15 16 ⁺		
4918.9 ^{<i>a</i>} 8	18^{+}		
4928.0 9	(17)		
5181.4 8	18^{+}		
5259.8 ^{&} 8	(17-)		
5344.0 8	18-		
$5568.1^{\circ}8$	(19^{-})		
5715.0 ¹¹ 9	20^{-1}		
0102.0~ 9	(21)		

¹⁹⁸Pt(⁹Be, α 3n γ) 1999Go21 (continued)

²⁰⁰Hg Levels (continued)

[†] From least-squares fit to $E\gamma's$. [‡] From 1999Go21, based on γ ray multipolarities. [#] Band(A): Oblate-deformed, ground-state band. [@] Band(B): $\nu(p_{3/2}^{-1}, i_{13/2}^{-1})$ band (σ =0). [&] Band(C): $\nu(p_{3/2}^{-1}, i_{13/2}^{-1})$ band (σ =1) at low spin and configuration= $\nu(p_{3/2}^{-1}, i_{13/2}^{-3})$ at high spin. ^a Band(D): $\nu(i_{13/2}^{-2})$ band.

$\gamma(^{200}\text{Hg})$

E_{γ}^{\dagger}	I_{γ}^{\dagger}	E_i (level)	\mathbf{J}_i^{π}	$\mathbf{E}_f = \mathbf{J}_f^{\pi}$	Mult. [‡]	Comments
86.4 5		2135.2	8-	2049.0 6-	[E2]	
94.2 5	94	3215.0	12^{+}	3120.7 10+	(E2)	Mult.: From total α deduced using intensity balance in
						1999Go21, but the value was not reported by the authors.
110.7 3	17.0 14	1962.5	7-	1851.7 5-	E2	Mult.: DCO=0.88 19.
172.7 3	55 4	2135.2	8-	1962.5 7-	M1	Mult.: DCO=0.75 9.
181.0 3	230 9	2143.6	9-	1962.5 7-	E2	Mult.: DCO=1.03 10.
197.4 5	7.1 11	2049.0	6-	1851.7 5-	M1	Mult.: DCO=0.77 12.
221.7 5	1.0 4	4094.4	(15)	3872.7 (14 ⁺)		Mult.: DCO=0.69 28.
224.0 5	2.6 8	5568.1	(19 ⁻)	5344.0 18+	(E1)	Mult.: DCO=0.62 10.
246.4 5	0.6 3	6162.0	(21^{-})	5915.6 20+	(E1)	Mult.: DCO=0.48 32.
255.8 3	700 24	1962.5	7-	1706.7 6+	E1	Mult.: DCO=0.64 6.
261.1 3	18.5 22	3872.7	(14^{+})	3611.6 14+	(M1)	Mult.: DCO=1.03 10.
308.3 5	4.0 10	5568.1	(19 ⁻)	5259.8 (17 ⁻)	E2	Mult.: DCO=1.00 14.
336.1 3	15.0 24	2298.6	(8)	1962.5 7-		Mult.: DCO=0.63 7.
342.3 3	63 5	2049.0	6-	1706.7 6+	E1	Mult.: DCO=1.04 11.
345.1 5	1.8 5	4540.9	16+	4195.8 16+	M1	Mult.: DCO=0.71 34.
368.0 3	1000	368.0	2+	$0.0 \ 0^+$	E2	Mult.: DCO=0.99 8.
378.9 3	14.2 13	2522.5	10-	2143.6 9-	M1	Mult.: DCO=0.96 27.
386.8 5	0.4 2	5568.1	(19 ⁻)	5181.4 18+	(E1)	Mult.: DCO=0.52 20.
387.3 3	84 8	2522.5	10-	2135.2 8-	E2	Mult.: DCO=0.96 11.
396.5 3	135 8	3611.6	14+	3215.0 12+	E2	Mult.: DCO=0.97 11.
423.7 5	2.9 6	4296.4	16+	3872.7 (14+)		Mult.: DCO=0.84 14.
446.4 5	0.8 4	4540.9	16+	4094.4 (15)		Mult.: DCO=0.92 19.
457.8 3	11.0 17	3672.8	14+	3215.0 12+	E2	Mult.: DCO=1.06 22.
461.7 3	24 2	2596.9	(9)	2135.2 8-		Mult.: DCO=0.65 10.
4/4.8 5	3.4 7	3872.7	(14^{+})	3397.9 13-	(E1)	Mult.: DCO=0.82 21.
482.9 5	5.5 8	4094.4	(15)	3611.6 14+		Mult.: DCO=0.72 14.
497.8 3	305 12	2641.4	11-	2143.6 9-	E2	Mult.: DCO=1.06 9.
523.8 3	11.3 10	3120.7	10+	2596.9 (9)	D	Mult.: DCO=0.61 8.
573.5 3	202 10	3215.0	12+	2641.4 11	EI	Mult.: DCO=0.61 6.
579.3 3	1005 30	947.3	4-	368.0 2+	E2	Mult.: DCO=1.06 11.
584.2 3	373	4195.8	16	3611.6 14+	E2	Mult.: DCO=1.08 9.
593.9 5	1.2.5	6162.0	(21)	5568.1 (19)	E2	Mult.: DCO=0.86 17.
600.3 3	39.3	3122.8	12	2522.5 10	E2	Mult.: DCO=1.05 10.
622.6.5	3.0 6	4918.9	18'	4296.4 16	E2	
631.6.5	5.0 9	4928.0	(17)	4296.4 16	(171)	Mult.: DCO=0.60 12.
649.1 3	0.8 3	5568.1	(19 ⁻)	4918.9 18+	(EI)	Mult.: DCO=0.52 9.
684.9 3	193	4296.4	16'	3611.6 14	E2	Mult.: DCO=0.91 14.
/10.8 3	3.1 10	2680.0	δ' (17=)	1962.5 /		
/18./ 3	8.8 15	5259.8	(1/)	4540.9 16	(EI)	Mult.: $DCO=0.6/9$.
123.0 3	11.9 10	4918.9	18	4195.8 16	E2	Mult.: $DCO = 1.05 \ I5$
130.0 3	44 0	3397.9	15	2041.4 11	E2 E2	Mull.: DCO = 1.05 IS.
139.3 3	185 24	1/00./	0	947.3 4 4540.0 16+	E2 E2	Muil.: DCO=1.10.22
803.1 J	4.99	5344.0	18'	4540.9 10	EZ (E2)	Muit.: DCO=1.10 23.
816.4 3	1.1.5	5259.8	(1/)	4443.7 15	(E2)	

Continued on next page (footnotes at end of table)

¹⁹⁸Pt(⁹Be, α 3n γ) 1999Go21 (continued)

γ (²⁰⁰Hg) (continued)

E_{γ}^{\dagger}	I_{γ}^{\dagger}	E _i (level)	\mathbf{J}_i^{π}	E_f .	J_f^{π} N	Mult. [‡]	Comments
885.0 5	2.7 6	5181.4	18^{+}	4296.4 1	6 ⁺ E	E2	Mult.: DCO=1.18 19.
902.3 5	9.4 16	4025.1	14^{-}	3122.8 1	2 ⁻ E	E2	Mult.: DCO=0.83 15.
904.2 <i>3</i>	150 6	1851.7	5-	947.3 4	4+ E	E1	Mult.: DCO=0.68 6.
929.2 <i>3</i>	13.7 19	4540.9	16^{+}	3611.6 1	4 ⁺ E	E2	Mult.: DCO=0.93 14.
973.6 <i>3</i>	16.9 24	2680.0	8+	1706.7 6	5 ⁺ E	E2	Mult.: DCO=1.06 13.
977.1 <i>3</i>	49 4	3120.7	10^{+}	2143.6 9)- E	E1	Mult.: DCO=0.64 9.
985.7 5	2.5 5	5181.4	18^{+}	4195.8 1	16+ E	E2	Mult.: DCO=0.73 18.
996.7 5	2.0 3	5915.6	20^{+}	4918.9 1	18 ⁺ E	E2	Mult.: DCO=0.93 19.
1045.9 <i>3</i>	10.9 22	4443.7	15^{-}	3397.9 1	13- E	E2	Mult.: DCO=0.94 17.

[†] From 1999Go21. $\Delta E\gamma$ estimated by the evaluator as 0.3 keV for $I\gamma \ge 10$ and 0.5 keV for $I\gamma < 10$. [‡] From $\gamma\gamma(\theta)$ (DCO) and the apparent band structures in 1999Go21, unless otherwise stated.

 $^{200}_{\ 80} Hg_{120}$

5

 $^{200}_{\ 80} Hg_{120}$