## Adopted Levels, Gammas

| Type<br>Full Evaluation                                                                                                                                                                                       |                   |                   | Type<br>ll Evaluation                                 | Author<br>F. G. Kondey                                                                                                                                                                                                                                                                                                                                                                                                                                                 | History<br>Citation<br>NDS 192.1 (2023)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Literature Cutoff Date<br>1-Aug-2023 |  |  |  |  |  |  |  |  |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|-------------------|-------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------|--|--|--|--|--|--|--|--|
| Q(β <sup>-</sup> )=2263 27                                                                                                                                                                                    | ; S(n)=6          | 6218 27; S(p      | b)=7140 <i>27</i> ; Q                                 | $Q(\alpha) = -230\ 50$                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 2021Wa16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                      |  |  |  |  |  |  |  |  |
| <sup>200</sup> Au Levels                                                                                                                                                                                      |                   |                   |                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                      |  |  |  |  |  |  |  |  |
| Cross Reference (XREF) Flags                                                                                                                                                                                  |                   |                   |                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                      |  |  |  |  |  |  |  |  |
| $\begin{array}{l} \mathbf{A} \qquad \begin{array}{l} 200  \mathrm{Pt}  \beta^{-}  \mathrm{decay} \\ \mathbf{B} \qquad \begin{array}{l} 200  \mathrm{Au}  \mathrm{IT}  \mathrm{decay} \end{array} \end{array}$ |                   |                   |                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                      |  |  |  |  |  |  |  |  |
| E(level) <sup>†</sup>                                                                                                                                                                                         | $J^{\pi}$         | T <sub>1/2</sub>  | XREF                                                  | Comments                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                      |  |  |  |  |  |  |  |  |
| 0<br>59.98 <i>3</i><br>76.22 <i>4</i><br>103.65 <i>4</i><br>166.00? <i>13</i><br>239.55 <i>9</i><br>243.67 <i>5</i>                                                                                           | (1 <sup>-</sup> ) | 48.4 min <i>3</i> | AB<br>AB<br>A<br>A<br>A<br>A<br>A<br>A<br>A<br>A<br>A | %β <sup>-</sup> =100<br>J <sup>π</sup> : Strong population of the J <sup>π</sup> =0 <sup>+</sup> and 2 <sup>+</sup> (1593.4 keV) levels in <sup>200</sup> Hg followi<br><sup>200</sup> Au β <sup>-</sup> decay; π from systematics of single-particle structures in neighborin<br>odd-mass nuclei.<br>T <sub>1/2</sub> : From β(t) in 1959Ro53. Others: 48 min 1 (1960Gi01) and 48 min 2 (1941)<br>configuration: Dominant $π(d_{3/2}^{-1}) \otimes ν(f_{5/2}^{-1})$ . |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                      |  |  |  |  |  |  |  |  |
| 292.71 <i>5</i><br>303.69 <i>3</i>                                                                                                                                                                            |                   |                   | A<br>A                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                      |  |  |  |  |  |  |  |  |
| 390.22 4<br>468.71 6<br>1010 40                                                                                                                                                                               | 12-               | 18.7 h 5          | A<br>B<br>J                                           | %IT=16 1; % $\beta^-$ =<br>$\mu$ =5.88 9 (2019St<br>%IT is from 1972<br>I( $\gamma$ +ce)(497.7 $\gamma$<br>being the strong<br>%IT=3 (1968St<br>E(level): From 20<br>J <sup><math>\pi</math></sup> : Directly meas<br>nuclei techniqu<br>in <sup>200</sup> Hg follow<br>T <sub>1/2</sub> : From 580 $\gamma$ (<br>$\mu$ : From $\mu$ =5.80 St<br>technique. Othe<br>configuration: $\pi$ (fr                                                                           | <i>I</i> ; $\%\beta^{-}=84\ I$<br><i>Q</i> (2019StZV)<br>rom 1972Cu07; Others: $\%$ IT=14.8 26 by the evaluator using<br>$()(497.7\gamma,^{200}\text{Hg})$ and $I(\gamma+\text{ce})(332.8\gamma)$ (assumed E2) from 1972Cu07, the later<br>the strongest $\gamma$ ray assigned to follow the decay of the isomer (1972Cu07) and<br>3 (1968Sa08).<br>From 2021Ko07, based on AME mass adjustment – see 2021Hu06 for details.<br>rtly measured in 1973Ba11 using the nuclear magnetic resonance of oriented<br>technique; measured $\mu$ ; strong $\beta^{-}$ feeding of the $J^{\pi}=11^{-}$ state at 2641.57 keV<br>Hg following $^{200m}\text{Au}\ \beta^{-}$ decay.<br>Som 580 $\gamma$ (t) in 1968Sa08.<br>$\mu=5.80\ 9$ in 1984Ha45 determined using the NMR on oriented nuclei<br>que. Other: 6.10 20 (1973Ba11).<br>ation: $\pi(h_{11/2}^{-1})\otimes v(i_{13/2}^{-1})$ . |                                      |  |  |  |  |  |  |  |  |

 $^{\dagger}$  From a least squares fit to Ey, unless otherwise stated.

## Adopted Levels, Gammas (continued)

## $\gamma(^{200}\mathrm{Au})$

| E <sub>i</sub> (level) | $E_{\gamma}^{\dagger}$ | $I_{\gamma}^{\dagger}$ | $E_f$  | $\mathbf{J}_{f}^{\pi}$ | E <sub>i</sub> (level) | $E_{\gamma}^{\dagger}$ | $I_{\gamma}^{\dagger}$ | $E_f$   | $\mathbf{J}_{f}^{\pi}$ |
|------------------------|------------------------|------------------------|--------|------------------------|------------------------|------------------------|------------------------|---------|------------------------|
| 59.98                  | 60.00 4                | 100                    | 0      | (1-)                   | 303.69                 | 137.68 <sup>‡</sup> 16 | 9.3 13                 | 166.00? |                        |
| 76.22                  | 76.20 5                | 100                    | 0      | $(1^{-})$              |                        | 200.00 6               | 27.0 16                | 103.65  |                        |
| 103.65                 | 27.48 10               | 3.8 11                 | 76.22  |                        |                        | 227.45 5               | 83 4                   | 76.22   |                        |
|                        | 43.67 4                | 78 4                   | 59.98  |                        |                        | 243.71 5               | 100 6                  | 59.98   |                        |
|                        | 103.60 9               | 100 5                  | 0      | $(1^{-})$              |                        | 303.70 5               | 6.56 <i>43</i>         | 0       | $(1^{-})$              |
| 166.00?                | 166.0 <sup>‡</sup> 2   | 100                    | 0      | (1-)                   | 390.22                 | 86.40 14               | 2.6 11                 | 303.69  |                        |
| 239.55                 | 135.94 15              | 100 6                  | 103.65 |                        |                        | 97.52 9                | 11.5 16                | 292.71  |                        |
|                        | 179.40 <i>19</i>       | 1.44 24                | 59.98  |                        |                        | 146.54 17              | 44 4                   | 243.67  |                        |
|                        | 239.56 16              | 2.45 33                | 0      | $(1^{-})$              |                        | 150.61 18              | 23 3                   | 239.55  |                        |
| 243.67                 | 140.09 21              | 198                    | 103.65 |                        |                        | 286.69 21              | 3.12 64                | 103.65  |                        |
|                        | 167.37 21              | 100 13                 | 76.22  |                        |                        | 313.97 7               | 11.6 9                 | 76.22   |                        |
|                        | 183.38 <i>15</i>       | 16.1 22                | 59.98  |                        |                        | 330.28 5               | 100 6                  | 59.98   |                        |
|                        | 243.71 5               | 15 4                   | 0      | $(1^{-})$              |                        | 390.20 6               | 27.5 16                | 0       | $(1^{-})$              |
| 292.71                 | 189.38 40              | 41 15                  | 103.65 |                        | 468.71                 | 164.95 <i>35</i>       | 24 8                   | 303.69  |                        |
|                        | 232.80 8               | 32.9 25                | 59.98  |                        |                        | 408.68 22              | 8.5 19                 | 59.98   |                        |
|                        | 292.66 6               | 100 6                  | 0      | (1 <sup>-</sup> )      |                        | 468.72 6               | 100 6                  | 0       | $(1^{-})$              |

 $^{\dagger}$  From  $^{200} {\rm Pt} \ \beta^-$  decay.  $^{\ddagger}$  The ordering of the transitions is uncertain.





 $^{200}_{79}\mathrm{Au}_{121}$ -3

From ENSDF

ω