²⁰⁰Au IT decay 1972Cu07

		History	
Туре	Author	Citation	Literature Cutoff Date
Full Evaluation	F. G. Kondev	NDS 192,1 (2023)	1-Aug-2023

Parent: ²⁰⁰Au: E=1010 40; $J^{\pi}=12^{-}$; $T_{1/2}=18.7$ h 5; %IT decay=16 1

1972Cu07: ^{200m}Au produced in ²⁰²Hg(d, α) reaction 18 MeV; Detectors: two Ge(Li) and Si(Li); Measured: E γ , I γ , $\gamma\gamma$ and $\beta\gamma$. Others: 1968Sa08, 1970To14.

²⁰⁰Au Levels

E(level) [†]	$J^{\pi \dagger}$	T _{1/2}	Comments	
0 59.98 <i>3</i>	(1-)	48.4 min <i>3</i>	$T_{1/2}$: From Adopted Levels.	
1010 40	12-	18.7 h 5	%IT=16 1; $\%\beta^-=84$ 1 %IT is from 1972Cu07; Others: %IT=14.8 26 by the evaluator using I(γ +ce)(497.7 γ , ²⁰⁰ Hg) and I(γ +ce)(332.8 γ) (assumed E2) from 1972Cu07, the later being the strongest γ ray assigned to follow the decay of the isomer (1972Cu07) and %IT=3 (1968Sa08). T _{1/2} : From 580 γ (t) in 1968Sa08. μ : 5.80 9 in 1984Ha45 determined using the NMR on oriented nuclei technique. Other: 6.10 20 (1973Ba11). configuration: $\pi(h_{11/2}^{-1}) \otimes v(i_{13/2}^{-1})$.	

[†] From Adopted Levels.

 $\gamma(^{200}\mathrm{Au})$

I γ normalization: From I(γ +ce)(497.7 γ) + I(γ +ce)(332.8 γ) (assumed E2)=100 %. I γ are from 1972Cu07. It is assumed that 332.8 γ contains all the ^{200m}Au IT intensity to the ground state given the good agreement with the deduced %IT=14.8 26 using this γ ray. 497.7 γ in ²⁰⁰Hg contains all intensity in β^- decay of the ²⁰⁰Au isomer.

E_{γ}^{\dagger}	$I_{\gamma}^{\dagger \ddagger}$	E _i (level)	$\mathbf{E}_f \mathbf{J}_f^{\pi}$	Comments
60.08 12	3.8 8	59.98	$0 (1^{-})$	%Iy=0.53 <i>12</i>
^x 84.25 35	0.8 <i>3</i>			$\%I\gamma = 0.11 4$
^x 101.43 12	0.9 2			$\%I\gamma = 0.125 \ 30$
^x 105.42 12	1.1 3			$\%I\gamma = 0.15 4$
x120.28 12	1.3 4			%Iγ=0.18 <i>6</i>
^x 133.23 <i>12</i>	3.7 6			$\%I\gamma = 0.52 \ 10$
x137.28 30	1.5 6			%Iy=0.21 9
^x 144.60 <i>30</i>	1.3 5			%Iγ=0.18 7
^x 146.07 20	4.5 6			%Iy=0.63 10
x218.51 12	2.1 4			$\%I\gamma = 0.296$
x332.82 40	15.7 30			$\%I\gamma = 2.25$

[†] From 1972Cu07. Assignment to ²⁰⁰Au based on anti-coincidence with the 367.99-keV, 2⁺ to 0⁺ transition in ²⁰⁰Hg.

[‡] For absolute intensity per 100 decays, multiply by 0.139 13.

 $x \gamma$ ray not placed in level scheme.

²⁰⁰Au IT decay 1972Cu07

Decay Scheme

Intensities: I_{γ} per 100 parent decays %IT=16 *1*

