Adopted Levels, Gammas

			Tuno	Author	History									
			Full Evalua	tion E.G. Kond	ev NDS 192.1 (2023)	1-Aug-2023								
			T un Evalua		1100 172,1 (2023)	1 Hug 2023								
$Q(\beta^{-}) = -4987\ 25;\ S(n) = 8236\ 25;\ S(p) = 1.038\ 25;\ Q(\alpha) = 6596.2\ 13$ 2021Wa16														
	²⁰⁰ At Levels													
				Cross	Reference (XREF) Flags									
				A B C	²⁰⁴ Fr α decay (2.05 s) ²⁰⁴ Fr α decay (2.31 s) ²⁰⁴ Fr α decay (1.65 s)									
E(level)	\mathbf{J}^{π}	T _{1/2}	XREF	Comments										
0 112.9 29	(3 ⁺) (7 ⁺)	43.1 s 8 47 s <i>I</i>	ABC 4	Comments $ \begin{aligned} &\pi = 52 4; &\pi = +\pi \beta^{+} = 48 4 \\ &\mu = 4.28 15 \\ Q = -0.50 5 \end{aligned} $ %a: Weighted average of 57% 6 (1992Hu04) and 49% 4 in 1998Bo14. Other: $&\pi a = 32 6 \\ ∈ 1974Ho27. &\pi +\pi \beta^{+} & was not directly measured. \end{aligned} $ $ \mu Q: from measured hyperfine-structure constants and isotope shifts using the in-source resonance-ionization spectroscopy method. Magnetic moment is deduced using a reference value of \mu = 4.139 37 for 211At (2018Cu02). $ $ \mu: from 4.279 96(stat)110(syst) in 2018Cu02 with statistical and systematic uncertainties added in quadrature. Same value given in 2019StZV. Q: from -0.50 8(stat)50(syst) in 2018Cu02 with statistical and systematic uncertainties added in quadrature. Same value given in 2019StZV. Q: from -0.50 8(stat)50(syst) in 2018Cu02 with statistical and systematic uncertainties added in quadrature. Same value given in 2019StZV. Q: from -0.50 8(stat)50(syst) in 2018Cu02 with statistical and systematic uncertainties added in quadrature. Same value given in 2019StZV. Q: from -0.50 8(stat)50(syst) in 2018Cu02 with statistical and systematic uncertainties added in quadrature. Same value given in 2019StZV. Q: from +0.50 8(stat)50(syst) in 2018Cu02 with statistical and systematic uncertainties added in quadrature. Same value given in 2019StZV. Star 4 (1987Va09), 6465 keV 2 (1995BaY)) and 6463 keV 5 (1996Ta18), 6461 keV (1987Va09), 6465 keV 2 (1975BaY)) and 6463 keV 5 (1967Tr06). configuration: Probable \pi(h_{9/2}^{+1}) \otimes r(f_{5/2}^{-1}).#a - 74 18Q = -1.0 5%a: From 1992Hu04. Other: \pi a = 21 4 in 1974Ho27. \pi e + \pi \beta^{+} was not directly measured.\mu Q: From measured hyperfine-structure constants and isotope shifts using the in-source resonance-ionization spectroscopy method. Magnetic moment is deduced using a reference value of \mu = 4.139 37 for 211At (2018Cu02).\mu: From 4.74 13(stat)12(syst) in 2018Cu02 with statistical and systematic uncertainties added in quadrature. \pi = .72 18 in 2019StZZ.Q: From -0.96 12(stat)50(syst) in 2018Cu02 with $										
113 7	$(2 A)^+$			G : Pavored α deca $T_{1/2}$: From 1992H Eα=6413 keV 6 (2 keV (1987Va09) configuration: Prob E(level): From Fac	ay to 1.5 B isomeric state (u04. Others: 47 s 3 (1990) 2005Uu02), 6414 keV 1 (100) 6412 keV 2 (1975BaYJ) bable $\pi(h_{9/2}^{+1}) \otimes v(f_{5/2}^{-1})$.	(3 = (7)). (5)								
115 1	(2,4)		л	E(IEVEI). FIUII E γ	-113 KeV I 10 g.s. (1992)	(100 -7) .								

Continued on next page (footnotes at end of table)

 $^{200}_{85}\mathrm{At}_{115}\text{-}2$

Adopted Levels, Gammas (continued)

²⁰⁰At Levels (continued)

E(level)	\mathbf{J}^{π}	T _{1/2}	XREF	Comments									
				$J^{\pi}: 113\gamma (M)$ $J^{\pi}=3^{+}$	[1) to (3 ⁺). The HF i	in ²⁰⁴ Fr α -decay (2.05 s, $J^{\pi}=(3^+)$) would exclude						
343.8 29	(10 ⁻)	6.3 s 5	С	$%\alpha \approx 10.5 3$; %IT≈89.5 3 μ =2.69 11 Q=+0.5 4 %α: From 1992Hu04. %IT was not directly measured. %ε + %β ⁺ branch is also possible. μ ,Q: from measured hyperfine-structure constants and isotope shifts using the in-source resonance-ionization spectroscopy method. Magnetic moment is deduced using a reference value of μ =4.139 37 for ²¹¹ At (2018Cu02). μ : from 2.694 82(stat)65(syst) in 2018Cu02 with statistical and systematic uncertainties added in quadrature. μ =2.68 11 in 2021StZZ. Q: from +0.54 25(stat)30(syst) in 2018Cu02 with statistical and systematic uncertainties added in quadrature. Same value given in 2021StZZ. $\delta < r^2 > (^{200}At, ^{205}At) = -0.258 \text{ fm}^2 9(\text{stat}) I 3(\text{syst}) (2018Cu02).$ E(level): From E(J ^π =(7 ⁺))=112.9 keV 29 and Eγ=230.9 keV 2 (1992Hu04). T _{1/2} : From 1996Ta18. Others: 7.3 s +26-15 (2005Uu02), 3.5 s 2 (1992Hu04), 5 s 2 (1975BaYJ) and 4.3 s 3 (1967Tr06). J ^π : Favored α decay to ¹⁹⁶ Bi isomeric state (J ^π =(10 ⁻)); 230.9γ E3 to (7 ⁺). Eα=6543 keV 6 (2005Uu02), 6528 keV 1 (1996Ta18), 6538 keV 3 (1992Hu04) and 6536 keV 5 (1967Tr06). configuration: Probable $\pi(h_{9/2}^{+1}) \otimes v(i_{13/2}^{-1})$.									
	$\gamma^{(200} \text{At})$												
E _i (level)	J_i^π	Eγ	I_{γ}	$\mathbf{E}_f \mathbf{J}_f^{\pi}$	Mult.	α^{\dagger}	Comments						
113 343.8	$(\overline{2,4})^+$ (10^-)	113 <i>I</i> 230.9 2	100	$\overline{0}$ $\overline{(3^+)}$ 112.9 (7^+)	(M1) E3	8.54 25 2.49 <i>4</i>	$\alpha(K)=6.90\ 20;\ \alpha(L)=1.24\ 4;\ \alpha(M)=0.295\ 9$ $\alpha(N)=0.0764\ 23;\ \alpha(O)=0.0164\ 5;\ \alpha(P)=0.00226\ 7$ Mult.: Reported in 1992Hu04, but no spectroscopic information is presented by the authors. $\alpha(K)=0.312\ 4;\ \alpha(L)=1.592\ 23;\ \alpha(M)=0.442\ 6$ $\alpha(N)=0.1152\ 17;\ \alpha(O)=0.02282\ 34;\ \alpha(P)=0.002393\ 35$						
							B(E3)(W.u.)≈0.00059 5 Mult.: From α (K)exp=0.29 8, α (L)exp=1.1 2 and α (M)exp=0.27 6 in 1992Hu04.						

[†] Additional information 1.

Adopted Levels, Gammas

Level Scheme

Intensities: Relative photon branching from each level

 $^{200}_{85}{\rm At}_{115}$