208 Pb(21 N, 20 N γ) 2016Ro13

	History		
Туре	Author	Citation	Literature Cutoff Date
Full Evaluation	C. G. Sheu, J. H. Kelley	ENSDF	31-Dec-2018

2016Ro13: The Coulomb dissociation of ²¹N was studied at the GSI LAND/R3B facility using a secondary beam produced by fragmenting an 490 MeV/nucleon ⁴⁰Ar beam. The ²¹N beam impinged on a 0.176 mm 4 thick natural lead target for the Coulomb Excitation measurements, while measurements on a 5.08 mm thick carbon target were used to estimate the nuclear breakup contributions. Reaction γ -rays were detected using the 162 NaI Crystal Ball array; neutrons from Coulomb breakup reactions were detected in the LAND neutron wall array, and the core ejectiles were deflected in the ALADIN magnet and detected and identified in a two-dimension position sensitive plastic scintillator ΔE wall.

- Analysis of the γ -ray data from the Crystal Ball indicated the ²¹N levels populated in the Coulomb excitation reactions neutron decay to ²⁰N*(0,850,1300) states. The γ -ray spectrum measured in coincidence with n+²⁰N shows a dominant peak with $E_{\gamma} \approx 850$ keV and a much smaller peak around $E_{\gamma} \approx 1300$ keV. The authors attribute most of the cross section to the 850 keV level, and they did not attempt to deconvolute the two observed peaks.
- The Coulomb dissociation cross section of ²¹N integrated over 0-20 MeV excitation energy for the total reaction was measured as $\sigma(^{21}N, \text{total})=75 \text{ mb } 4$; $\sigma(^{21}N, ^{20}N_{\text{g.s.}})=31 \text{ mb } 16$; $\sigma(^{21}N, ^{20}N*(850+1300 \text{ keV}))=47 \text{ mb } 8$; this requires a new math. The quoted uncertainties are statistical only since the systematic uncertainties from the identification of the incoming particles, from the single neutron detection efficiency of LAND, from the Crystal Ball efficiency and from the measurement of the areal density of the target were negligible compared to the statistical uncertainty.

²⁰N Levels

E(level)	Comments
0	
850	E(level): The authors stated that due to the limited resolution of the gamma calorimeter, the first and the second excited states could not be separated.
1300	E(level): The authors attribute most of the cross section to the 850-level, and they did not attempt to deconvolute the two observed peaks.

$\gamma(^{20}N)$

Eγ	E_i (level)	E_f
850	850	0

208 Pb(21 N, 20 N γ) 2016Ro13

Level Scheme

 ${}^{20}_{7}\mathrm{N}_{13}$