Si(P,²⁰Mg) 2014Ga20

Type Author Citation Literature Cutoff Date

Full Evaluation J. H. Kelley, G. C. Sheu ENSDF 20-June-2019

2014Ga20: The mass of ²⁰Mg was measured using a Penning trap. Beams of ^{20,21}Mg ions were produced via 480 MeV proton spallation on a SiC target and separately transported to the TRIUMF/TITAN system. The cyclotron frequency was determined relative to a ²³Na reference. The mass excess of 17477.7 keV *18* was deduced, which compares relatively poorly with the value given in AME2012 (17559 keV *27*). In addition, the IMME parameters were discussed.

2016Lu13: XUNDL dataset compiled by TUNL, 2017.

A pulsed beam of 30 keV 20 Mg ions was produced at the CERN/ISOLDE facility using standard spallation techniques. The beam was magnetically purified, for mass separation, and implanted in a 24.5 μ g/cm² carbon foil. The foil was surrounded by an array of four position sensitive Δ E-E Si detector telescopes that were placed at $\theta \approx \pm 45^{\circ}$ and $\pm 135^{\circ}$ in the horizontal plane. The 5 cm \times 5 cm Δ E detectors each covered about 5.2% of 4π . A thick position sensitive E detector covered the region below the implantation foil while the target apparatus occupied the space above. In addition, a set of four clover segmented HPGe detectors were positioned downstream of the target, to measure decay γ rays.

The decay paths and branching intensities are determined from analysis of the p+ γ coincidences for proton decays to 19 Ne*(0,235,275,1508,1536). The 20 Na energies are deduced using the measured γ ray and proton energies and the known S_p=2190.1 keV 11 . The 20 Mg half-life, T=91.4 ms 10 , was deduced from analysis of the delayed proton events.

²⁰Mg Levels

E(level) $T_{1/2}$ Comments

91.4 ms 10 The cyclotron frequency was determined relative to a 23 Na reference, and the mass excess of 17477.7 keV 18 was deduced. $T_{1/2}$: From (2016Lu13).