Ni(²⁴Mg,²⁰Mg) 1995Pi03

	History		
Туре	Author	Citation	Literature Cutoff Date
Full Evaluation	J. H. Kelley, G. C. Sheu	ENSDF	20-June-2019

1995Pi05: States in ²⁰Na were studied by analyzing the β^+ decay of ²⁰Mg. A beam of ²⁰Mg ions was produced by fragmenting a 95 MeV/nucleon ²⁴Mg beam in ^{nat.}Ni target. The ²⁰Mg beam was purified in the LISE3 spectrometer and implanted near the middle of a 300 μ m thick Si Strip detector. The strip detector was surrounded by two 500 μ m segmented Si β -ray detectors and three 70% HPGe detectors. Hence the delayed proton energy in the implantation detector could be correlated with β particles and delayed γ -rays. The coincidence data were analyzed to deduce the decay branches. The $\%\beta^+p=30.3 \% 12$ was deduced. The half-life of ²⁰Mg was determined by analyzing the rate of two delayed protons, E_p=802 and 1675 keV. T_{1/2}=95 ms 3 is deduced and compared with prior results; the measurement (1992Go10) is suggested as having systematic errors.

²⁰Mg Levels

E(level)	T _{1/2}	Comments
0	95 ms 3	%β ⁺ p=30.3 <i>12</i> (1995Pi03)