$^{20}_{12}Mg_8$

⁹Be(²⁸Si,²⁰Mg) 2016Li45,2017Su05

History				
Туре	Author	Citation	Literature Cutoff Date	
Full Evaluation	J. H. Kelley, G. C. Sheu	ENSDF	20-June-2019	

2016Li45,2017Su05: XUNDL dataset compiled by TUNL, 2017.

A beam of ≈ 0.59 ²⁰Mg/s was produced by fragmenting a 75 MeV/A ²⁸Si beam on a 1.5 mm thick ⁹Be target at the Heavy Ion Research Facility of Lanzhou. The beam was magnetically purified before being implanted into a telescope of position sensitive Si detectors that measured the decay energies. A set of five clover segmented HPGe surrounded the telescope to detect the β -delayed γ -ray emissions.

The analysis was limited to events within the first 450 ms after implantation of a ²⁰Mg ion. About 10 peaks in the decay energy spectrum were easily attributed to β -delayed proton groups. The decay paths and branching ratios were interpreted using p+ γ coincidences for γ -rays from ¹⁹Ne*(238,275,1508,1536). The ²⁰Mg half-life, T=90.0 ms *6*, was deduced from analysis of the two strongest delayed proton groups E_p=(768,1589) keV.

²⁰Mg Levels

E(level)	T _{1/2}	

0 90.0 ms 6 $T_{1/2}$: From (2017Su05).

Comments