⁹Be(²⁴Mg,²⁰Mg) 1992Ku07,1992Ku24

	History		
Туре	Author	Citation	Literature Cutoff Date
Full Evaluation	J. H. Kelley, G. C. Sheu	ENSDF	20-June-2019

1992Ku07,1992Ku24: States in ²⁰Na were studied by analyzing the β^+ decay of ²⁰Mg. A beam of ²⁰Mg ions was produced by fragmenting a 100 MeV/nucleon ²⁴Mg beam in a thick Be target. The ²⁰Mg beam was magnetically purified and stopped in the center of a stack of Si detectors. Each time a ²⁰Mg implantation was detected the beam was stopped for a 200 ms period so the decay could be measured.

Decay to various ²⁰Na states was observed with a lifetime $T_{1/2}=114$ ms 17. 85% of detected events were connected with ²⁰Na decay, which implies $\%\beta^+p=15\%$.

2015Gl03: A beam of ²⁰Mg ions was produced by fragmenting a 170 MeV/nucleon ²⁴Mg beam on a ⁹Be target at the A1900/NSCL fragment separator. In this study, the mass of the lowest T=2 state of ²⁰Na was measured in the $J^{\pi}=0^+$ to 0^+ superallowed β decay of ²⁰Mg. The beam was implanted in a 25 mm thick plastic scintillator that was surrounded by 16 elements of the SeGA germanium detector array. The β - γ coincident events were analyzed. Their results validate the IMME without the need for additional terms.

2017Wr02: XUNDL dataset compiled by TUNL, 2017.

A beam of ²⁰Mg ions was produced by fragmenting a ²⁴Mg beam on a ⁹Be target using the NSCL/A1900 fragment separator. The beam was implanted ≈ 10 mm deep into a 25 mm thick plastic scintillator that was surrounded by the SeGA germanium array. The SeGA was configured with two coaxial rings of eight γ -ray detectors. The β - γ coincidences were analyzed. Using the Γ_{γ_0}/Γ =(80 15)% branching ratio, the β -p feeding of (0.0156 38)% was deduced for populating ¹⁹Ne(4034); the ²⁰Na levels feeding ¹⁹Ne*(4034) are not determined.

Finally, the authors suggest a new experimental configuration that would measure β -p- α coincidences and would have a sensitivity for improving on the $\Gamma_{\alpha}/\Gamma \le 5 \times 10^{-5}$ limit with a 10% accuracy.

2018Gl01: XUNDL dataset compiled by TUNL, 2018.

A cocktail beam including a ²⁰Mg ion component, produced at the MSU/A1900 fragment separator, was implanted into a 26.7 mm thick plastic scintillator that was surrounded by the SeGA array, which was configured as two rings of eight HPGe detectors. The β - γ coincidence events were analyzed with an exclusive focus on primary transitions from ²⁰Na*(2647).

²⁰Mg Levels

 $\frac{\text{E(level)}}{0} = \frac{\text{T}_{1/2}}{114 \text{ ms } 17} = \frac{\text{T}_{1/2}: \text{ From (1992Ku07).}}{\text{T}_{1/2}: \text{ From (1992Ku07).}}$

Comments

1