$C(^{36}S,X\gamma)$ 2008St18,2004St10

History

Type Author Citation Literature Cutoff Date
Full Evaluation M. S. Narijauskas, J. H. Kelley, C. G. Sheu ENSDF 9-June-2017

2004St10,2004St29,2008St18:

XUNDL sets compiled by S. Geraedts and B. Singh (McMaster) 2007-2008.

The authors populated 20 C using a cocktail beam of neutron-rich nuclides [25 Ne, 26 Ne, 26 Ne, 28 Na, 29 Mg, and 30 Mg] that were produced by fragmenting an initial 77.5 MeV/nucleon 36 S beam at the GANIL/SISSI beamline. The cocktail beam was selected using the α spectrometer and focused on a carbon target that was coupled to a plastic scintillator.

E γ , $\gamma\gamma$, γ (fragment) coincidences were measured using 74 BaF₂ detectors that surrounded the target with 4 π and the SPEG spectrometer. The ²⁰C were identified using time-of-flight, energy loss and focal-plane position information. A single γ -ray transition was observed. Results are compared with shell-model calculations for analysis of J^{π} values.

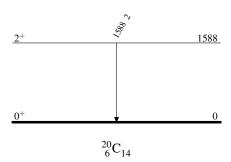
All data are from (2008St18).

²⁰C Levels

E(level) $J^{\pi^{\dagger}}$ Comments

1588 20 2^+ J^{π} : Systematics of e-e nuclei and shell-model predictions.

† From literature, and consistent with shell-model predictions shown in figure 4 of (2008St18).


 γ (20C)

 $\frac{E_{\gamma}}{1588\ 20}$ $\frac{I_{\gamma}}{2}$ $\frac{E_{i}(\text{level})}{1588}$ $\frac{J_{i}^{\pi}}{2^{+}}$ $\frac{E_{f}}{0}$ $\frac{J_{f}^{\pi}}{0^{+}}$

$C(^{36}S,X\gamma)$ 2008St18,2004St10

Level Scheme

Intensities: Relative I_{γ}

