History										
Туре	Author	Citation	Literature Cutoff Date							
Full Evaluation	Balraj Singh	NDS 108, 79 (2007)	15-Oct-2006							

Parent: ¹⁹⁹Tl: E=749.8 *4*; J^{π} =9/2⁻; $T_{1/2}$ =28.4 ms 2; %IT decay=100.0 1963Di10: Produced by ¹⁹⁷Au(α ,2n), E(α)=22 MeV, in-beam measurements, magnetic spectrometer. Others: 1963De28, 1965Gr04, 1967Co20, 1977KoZH, 1977Go15.

¹⁹⁹Tl Levels

E(level) [†]	J^{π}	T _{1/2}	Comments
0.0	$1/2^{+}$		
367.0 <i>3</i>	$3/2^{+}$	<1.5 ns	$T_{1/2}$: from 1959Jo21.
720 1	$(5/2)^+$		
749.8 <i>4</i>	9/2-	28.4 ms 2	$T_{1/2}$: weighted av: 28.9 ms 6 (1963De38), 27 ms 4 (1963Di10), 26.6 ms 14 (1965Gr04), 29.2
			ms 10 (1967Co20), 28.4 ms 2 (1977KoZH).

[†] From 'Adopted Levels'.

γ ⁽¹⁹⁹Tl)

I γ normalization: From average of Σ I(γ +ce) to g.s. and Σ I(γ +ce) from 749 level=100.

E_{γ}^{\dagger}	Ι _γ #@	E _i (level)	\mathbf{J}_i^π	\mathbf{E}_{f}	J_f^π	Mult.	δ	$\alpha^{\&}$	Comments
(29)		749.8	9/2-	720	(5/2)+	[M2]		6.7×10 ³ 3	$\alpha(L)=4.94\times10^{3} 22;$ $\alpha(M)=1.35\times10^{3} 6$ $\alpha: \text{ for } E\gamma=29.3 3 \text{ from E(level)}$ difference (adopted E(level)). $I(\gamma+ce)=Ti(353\gamma)+Ti(720\gamma)=10$ from decay scheme.
353	6.1	720	(5/2)+	367.0	3/2+	M1+E2	0.6 2	0.211 25	$\alpha(K) = 0.169 \ 22; \ \alpha(L) = 0.032 \ 2; \ \alpha(M) = 0.0075 \ 5; \ \alpha(N+) = 0.00240 \ 14$
367.0 [‡] 3	116	367.0	3/2+	0.0	1/2+	E2+M1	+1.6 2	0.112 10	Mult., δ : from adopted gammas . $\alpha(K) = 0.083 \ 9; \ \alpha(L) = 0.0214 \ 9; \ \alpha(M) = 0.00522 \ 19; \ \alpha(N+) = 0.00168 \ \delta$ δ : from K/L=3.5 3 (1963Di10) and (L1+L2)/L3=7.4 (¹⁹⁹ Pb ε decay); sign is positive from $\gamma\gamma(\theta)$ (1963Di10).
382.8 [‡] 3	103	749.8	9/2-	367.0	3/2+	E3		0.229	$\alpha(K)=0.0966; \alpha(L)=0.101;$ $\alpha(M)=0.0266; \alpha(N+)=0.00872$ Mult.: from $\gamma\gamma(\theta), A_2=0.20 + 4-3$ for $9/2(E3)3/2(M1+E2)1/2;$ also K/L=0.88 5 (1963Di10); also $\alpha(K)\exp=0.10$ from $(\alpha, 2n\gamma)$ reaction: theory: $\alpha(K)(E3)=0.007$
720	2.6	720	(5/2)+	0.0	1/2+	[E2]		0.0125	α(K)=0.00958; α(L)=0.00218 Iγ: Iγ(720)=4.2 from Iγ(720)/Iγ(353)=0.69 in 199Pb ε decay. decay. decay. C(L)=0.00218 Iγ(120)/Iγ(120)=4.2 from Iγ(120)/Iγ(120)/Iγ(120)=4.2 from Iγ(120)/I

¹⁹⁹Tl IT decay (28.4 ms) **1963Di10** (continued)

$\gamma(^{199}\text{Tl})$ (continued)

[†] From 1963Di10, unless otherwise noted.

[‡] From 1967Co20.

[#] Calculated from ce intensities (1963Di10) and adopted $\alpha(K)$.

- $^{@}$ For absolute intensity per 100 decays, multiply by $\approx\!\!0.75.$
- & Total theoretical internal conversion coefficients, calculated using the BrIcc code (2008Ki07) with Frozen orbital approximation based on γ -ray energies, assigned multipolarities, and mixing ratios, unless otherwise specified.

