¹⁹⁹Pt IT decay (13.6 s) 1959Wa15,1973Ur01

History								
Туре	Author	Citation	Literature Cutoff Date					
Full Evaluation	Balraj Singh	NDS 108, 79 (2007)	15-Oct-2006					

Parent: ¹⁹⁹Pt: E=424 2; $J^{\pi}=(13/2)^+$; $T_{1/2}=13.6$ s 4; %IT decay=100.0

¹⁹⁹Pt-%IT decay: From log *ft* systematics, estimated $\%\beta^-<0.06$ (log *ft*>5.1 to 549, (11/2)⁻ level in ¹⁹⁹Au). 1973Ur01: produced by ¹⁹⁸Pt(n, γ) E(n)=15.0 MeV 4, enriched target, semiconductor detector. 1959Wa15: E(n)=th, enriched target, scintillation detectors. The ordering of the E3 and M1 gammas is inferred from systematics and from T_{1/2}. No evidence for β^- decay found (1959Wa15).

No evidence for B decay found (1959)

Additional information 1.

¹⁹⁹Pt Levels

E(level)	J^{π}	T _{1/2}	Comments			
0.0	5/2-	30.80 min 21	J^{π} : expect 3/2 ⁻ or 5/2 ⁻ in this region. Supported by M1 assignment to 32-keV G. Two: from 'Adopted Levels'			
32 2 424 2	$(7/2)^-$ $(13/2)^+$	13.6 s 4	$T_{1/2}$: weighted average of 13.3 s 2 (1973Ur01), 14.1 s 3 (1959Wa15).			

[†] From 'Adopted Levels'.

 $\gamma(^{199}\text{Pt})$

No crossover 424-keV γ observed (1959Wa15).

E_{γ}	I_{γ}^{\dagger}	E_i (level)	\mathbf{J}_i^{π}	E_f	\mathbf{J}_f^{π}	Mult.	α^{\ddagger}	$I_{(\gamma+ce)}^{\dagger}$	Comments
32 2		32	(7/2)-	0.0	5/2-	M1	35 7	118.0 5	ce(L)/(γ+ce)=0.744 4; ce(M)/(γ+ce)=0.172 1 E _γ : from 1959Wa15. I _(γ+ce) : calculated from intensity balance; I _{γ≈3.3} from I(γ+ce) and α. Mult.: deduced from $\alpha(\exp)=20-25$ (1959Wa15); theory: $\alpha(E1)=1.8$ 4, $\alpha(E2)=1060$ 400. α : uncertainty in α due to ΔE .
391.93 14	100	424	(13/2)+	32	(7/2)-	E3	0.177		$\begin{aligned} &\alpha(\text{K}) = 0.0852; \ \alpha(\text{L}) = 0.0712; \ \alpha(\text{M}) = 0.0183; \\ &\alpha(\text{N}+) = 0.00568 \\ \text{E}_{\gamma}: \text{ from } 1973 \text{Ur}01. \\ &\text{Mult.: from } \alpha(\text{K}) \text{exp} = 0.087 \text{ (from (K x ray)/\gamma, 1959 Wa15) and } \text{T}_{1/2}; \text{ theory:} \\ &\alpha(\text{K})(\text{E2}) = 0.0322, \ \alpha(\text{K})(\text{E3}) = 0.0852, \\ &\alpha(\text{K})(\text{E4}) = 0.225, \ \alpha(\text{K})(\text{M1}) = 0.127. \\ &\text{B}(\text{E3})(\text{W.u.}) = 2.26 \times 10^{-5} \ 7; \ \gamma \text{ transition is} \\ &\text{highly hindered, consistent with} \\ &\text{core-excitation model.} \end{aligned}$

 † For absolute intensity per 100 decays, multiply by 0.849 5.

^{\ddagger} Total theoretical internal conversion coefficients, calculated using the BrIcc code (2008Ki07) with Frozen orbital approximation based on γ -ray energies, assigned multipolarities, and mixing ratios, unless otherwise specified.

¹⁹⁹Pt IT decay (13.6 s) 1959Wa15,1973Ur01

¹⁹⁹₇₈Pt₁₂₁