¹⁹⁸Pt(t,d) **1990Bu26**

History										
Type Author		Citation	Literature Cutoff Date							
Full Evaluation	Balraj Singh	NDS 108, 79 (2007)	15-Oct-2006							

1990Bu26: E(t)=18 MeV; measured E(d), $\sigma(\theta)$; magnetic spectrometer, FWHM \approx 17 keV; DWBA analysis. Comparison with U(6/12) supersymmetry model.

¹⁹⁹ Pt L

E(level)	$J^{\pi \dagger}$	L	S ^{‡#}	E(level)	L	S ^{‡#}
0	5/2-	3	1.48	1159 3		
35.7 10	$(3/2)^{-}$	1	1.08	1243 <i>3</i>		
87 <i>1</i>	$(3/2)^{-}$	1	0.040	1280 4		
133 <i>I</i>	1/2-	1	0.30	1337 ^a 4	а	
351 [@]	5/2-,7/2-	3	0.062	1363 ^a 4	a	
382 2	3/2-	1	0.032	1403 4		
430 <i>3</i>				1527 ^{@a}	a	
472 <i>3</i>	$3/2^{-}$	1	0.062	1604 7		
493 2	$(11/2^+, 13/2^+)$	(6)	1.12	1688 4		
514 2	$(7/2^{-})$	(3)	0.21	1719 ^{&a} 4	[3] ^a	3.0 <mark>&</mark>
580 2	$(7/2^{-})$	(3)	0.058	2195 10		
646 2	$(1/2^{-}, 3/2^{-})$	(1)	0.009	2225 10		
911 <i>3</i>	$(1/2^{-}, 3/2^{-})$	(1)	0.020	2270 ^a 10	а	
936 <i>3</i>				2297 ^a 10	а	
956 <i>3</i>	$1/2^{-}, 3/2^{-}$	1	0.11	2390 ^a 10	а	
976 <i>3</i>		(3)	0.11	2440 ^a 10	а	
1057 <i>3</i>		(1)	0.13			

[†] From 1990Bu26; based on L transfers in (t,d) and analyzing powers in (pol d,p). The assignments are consistent with those in 'Adopted Levels'.

^{\ddagger} S=[d σ /d Ω (exp)]/N[d σ /d Ω (DWBA)], N=5.06. The S factor given here is equivalent to C²S given by other authors.

[#] Relative values as given by 1990Bu26. Authors have increased their deduced values by the factor of 1.5 to make their overall average consistent with the (d,p) results.

[@] Energy read from fig. 8 of 1990Bu26.

& Intense peak is a multiplet. Strength given is obtained by assuming that all the observed cross section is from L=3 transition.

^{*a*} $\sigma(\theta)$ measured by 1990Bu26, but No L value could Be deduced. L=(3) In (d,p).