¹⁹⁹Tl ε decay (7.42 h) 1975Ma05,1960Ju03,1962Ba37

History									
Туре	Author	Citation	Literature Cutoff Date						
Full Evaluation	Balraj Singh	NDS 108, 79 (2007)	15-Oct-2006						

Parent: ¹⁹⁹Tl: E=0.0; $J^{\pi}=1/2^+$; $T_{1/2}=7.42$ h 8; $Q(\varepsilon)=1488\ 28$; $\%\varepsilon+\%\beta^+$ decay=100.0

1975Ma05: prepared by 197 Au(α ,2n), measured E γ , I γ .

1960Ju03: prepared by 85-MeV proton irradiation of thallium. Chem separation of Pb followed by mass-separator Tl purification, ce spectra, magnetic spectrometer.

1962Ba37: measured γ, γγ, γγ(t), γγ(θ).
Others:
γ: 1951Is02.
ce: 1960Ju03, 1953Be79.
γγ: 1961Gr29.
γγ(t), γγ(θ,H,t): 1961Gr29.

(ce)(ce)(t): 1961Re12.

¹⁹⁹Hg Levels

E(level) [†]	$J^{\pi \ddagger}$	T _{1/2}	Comments
0.0	1/2-		
158.37950 9	5/2-	2.36 ns 8	g=+0.352 <i>13</i> from 1977Kr11 I $\gamma(\theta, T_{1/2}, h)$. T _{1/2} : weighted average of 2.32 ns 8 (1961Gr29,1962Ba37), 2.53 ns <i>15</i> (1961Re12).
208.20616 10	3/2-		
403.51 3	3/2-		
413.84 5	5/2-		
455.462 17	$1/2^{-}, 3/2^{-}$		
492.297 18	3/2-		
750.40 <i>3</i>	$1/2^{-}, 3/2^{-}$		
1221.17 4	$1/2^{(-)}, 3/2^{(-)}$		

 † From least-squares fit to Ey's.

[‡] From 'Adopted Levels'.

E(decay)	E(level)	Ιβ ⁺ ‡	$\mathrm{I}\varepsilon^{\ddagger}$	Log ft	$I(\varepsilon + \beta^+)^{\dagger \ddagger}$	Comments
$(2.7 \times 10^2 \ 3)$	1221.17		2.6 3	6.10 14	2.6 3	εK=0.699 21; εL=0.223 15; εM+=0.078 6
$(7.4 \times 10^2 \ 3)$	750.40		1.88 20	7.29 6	1.88 20	εK=0.7843 15; εL=0.1622 11; εM+=0.0534 5
$(1.00 \times 10^3 \ 3)$	492.297		7.3 8	6.98 6	7.3 8	εK=0.7937 8; εL=0.1555 6; εM+=0.05080 21
$(1.03 \times 10^3 \ 3)$	455.462		29 <i>3</i>	6.42 6	29 <i>3</i>	εK=0.7946 7; εL=0.1548 5; εM+=0.05055 20
$(1.07 \times 10^{3\#} 3)$	413.84		< 0.08	>9.6 ¹ <i>u</i>	< 0.08	εK=0.7684 16; εL=0.1735 12; εM+=0.0580 5
$(1.08 \times 10^3 \ 3)$	403.51		1.77 23	7.68 7	1.77 23	εK=0.7958 7; εL=0.1540 5; εM+=0.05022 18
$(1.28 \times 10^3 \ 3)$	208.20616		9.3 17	7.11 9	9.3 17	εK=0.7993 5; εL=0.1515 4; εM+=0.04923 13
$(1.33 \times 10^{3\#} 3)$	158.37950		< 0.4	>9.3 ¹ <i>u</i>	< 0.4	εK=0.7794 10; εL=0.1657 7; εM+=0.0549 3
$(1.49 \times 10^3 \ 3)$	0.0	0.027 8	48 5	6.54 5	48 5	av $E\beta = 231 \ 13$; $\varepsilon K = 0.8015 \ 2$; $\varepsilon L = 0.14946 \ 25$; $\varepsilon M + = 0.04846 \ 10$
						ε M+=0.04846 10 I(ε + β ⁺): from 1962Ba37 Δ I(ε + β ⁺) estimated

 ε, β^+ radiations

by evaluator. $I\beta^+$: no β^+ detected (1951Is02); from theory and Q^+ , $\varepsilon/\beta^+ \approx 3000$. The uncertainty in ε/β^+ is

large due to the large uncertainty in Q+.

Continued on next page (footnotes at end of table)

¹⁹⁹Tl ε decay (7.42 h) 1975Ma05,1960Ju03,1962Ba37 (continued)

 ε, β^+ radiations (continued)

[†] Deduced from level scheme, unless otherwise noted.
[‡] Absolute intensity per 100 decays.
[#] Existence of this branch is questionable.

¹⁹⁹Tl ε decay (7.42 h) **1975Ma05,1960Ju03,1962Ba37** (continued)

 $\gamma(^{199}\text{Hg})$

I γ normalization: From intensity balance at each level combined with adopted I ϵ =48% to g.s. (1962Ba37). 1962Ba37 do not state explicitly their K x ray intensity. Evaluator estimates 10% uncertainty in I γ normalization.

 α (K)exp (1975Ma05) given in the table were calculated from Ice(K)(1960Ju03)/I γ (1975Ma05) assuming that the 158.379 γ is E2 and α (K)=0.30.

 $\boldsymbol{\omega}$

E_{γ}^{\dagger}	$I_{\gamma}^{\dagger b}$	E _i (level)	\mathbf{J}_i^{π}	\mathbf{E}_{f}	\mathbf{J}_f^{π}	Mult.	δ&	α ^{C}	$I_{(\gamma+ce)}^{b}$	Comments
(10.4 [#] 10)		413.84	5/2-	403.51	3/2-	[M1,E2]			0.08	$I_{(\gamma+ce)}$: deduced from 337-keV coin data (1975Ma05).
36.83 [@] 3	0.09 [‡] 2	492.297	3/2-	455.462	1/2-,3/2-	M1		27.9		α (L)= 21.31; α (M)= 4.97 Mult.: L1/L2 \approx 10, L/M=3 <i>I</i> (1960Ju03).
49.817 [@] 15	4.1 2	208.20616	3/2-	158.37950	5/2-	M1+E2	-0.044 ^{<i>a</i>} 4	11.7		$\begin{array}{lll} \alpha(L) = & 8.92 \; 4; \; \alpha(M) = \; 2.08 \; 1 \\ \text{Mult.: } \; L1/L3 = 61 \; 12, \; L2/L3 = 6 \; 2, \\ L/M = 4.8 \; 5, \; M/N = 3.1 \; 3, \; N/O = 5 \; 2 \\ & (1960 Ju03); \; \text{theory: } \; L1/L3 = 45 \; 4, \\ L2/L3 = 5.1 \; 5, \; L/M = 4.29 \; 1. \\ \text{I}_{\gamma}: \; \text{calculated from adopted branching} \\ & \text{ratio.} \end{array}$
51.93 [@] 6	0.19 [‡] 6	455.462	1/2 ⁻ ,3/2 ⁻	403.51	3/2-	(M1)		10.12		α (L)= 7.74; α (M)= 1.801; α (N+)= 0.579 Mult.: L1/L3>5, L/M=3 <i>l</i> (1960Ju03).
158.359 [@] 25	40 2	158.37950	5/2-	0.0	1/2-	E2		0.914		α (K)= 0.296; α (L)= 0.461; α (M)= 0.1194; α (N+)= 0.0374 Mult.: K/L=0.6 2, L/M=3.6 4, M/N=4.4 10, L1/L2<0.3, (L1+L2)/L3= 1.7 3 (1960Ju03).
195.30 5	2.1 2	403.51	3/2-	208.20616	3/2-	M1		1.23		$\begin{aligned} \alpha(\mathrm{K}) &= 1.007; \ \alpha(\mathrm{L}) = 0.1695; \ \alpha(\mathrm{M}) = \\ 0.0394; \ \alpha(\mathrm{N}+) = 0.01262 \\ \mathrm{Mult.:} \ \mathrm{K/L} = 5.3 \ 10 \ (1960\mathrm{Ju03}); \\ \alpha(\mathrm{K})\mathrm{exp} = 1.0 \ 2 \ (1975\mathrm{Ma05}). \end{aligned}$
205.6 [#] 10	0.08 3	413.84	5/2-	208.20616	3/2-	[M1,E2]		0.7 4		
208.20 <i>3</i>	99 5	208.20616	3/2-	0.0	1/2-	M1+E2	-0.388 ^{<i>a</i>} 9	0.937 4		$\begin{array}{l} \alpha({\rm K}){=}0.751 \; 4; \; \alpha({\rm L}){=}0.142; \\ \alpha({\rm M}){=}0.0334 \; 2; \; \alpha({\rm N}{+}){=}0.0106 \\ {\rm Mult.:} \; \alpha({\rm K}){\rm exp}{=}0.8 \; 1 \; (1975{\rm Ma05}); \\ {\rm K}/{\rm L}{=}5.1 \; 6, \; {\rm L}/{\rm M}{=}4.4 \; 5, \; {\rm M}/{\rm N}{=}4.4 \; 10, \\ {\rm L}1/{\rm L}3{=}20 \; 10 \; (1960{\rm Ju03}). \end{array}$
245.1 [#] 10 247.26 3	≤0.3 75 <i>4</i>	403.51 455.462	3/2 ⁻ 1/2 ⁻ ,3/2 ⁻	158.37950 208.20616	5/2 ⁻ 3/2 ⁻	[M1,E2] M1		0.43 <i>23</i> 0.637		α (K)= 0.523; α (L)= 0.0877; α (M)=0.02036; α (N+)=0.00650 Mult.: K/L=5.4 <i>11</i> , L1/L2>20 (1960Ju03), α (K)exp=0.5 <i>1</i>

 $^{199}_{80}\text{Hg}_{119}$ -3

 $^{199}_{80}\text{Hg}_{119}\text{-}3$

¹⁹⁹ Tl ε decay (7.42 h) 1975Ma05,1960Ju03,1962Ba37 (continued)											
γ ⁽¹⁹⁹ Hg) (continued)											
E_{γ}^{\dagger} $I_{\gamma}^{\dagger} b$ E_i (level) J_i^{π}	E_{f}	\mathbf{J}_{f}^{π}	Mult.	δ ^{&}	α^{c}	Comments					
	· ·	ř.				(1975Ma05). (247 γ)[50 γ](158 γ)(θ): isotropic (1962Ba37). (247 γ)(208 γ)(θ): A ₂ =0.00 <i>I</i> , A ₄ =0.00 <i>I</i> (1962Ba37).					
255.5 <i>I</i> 0.10 <i>3</i> 413.84 5/2 ⁻	158.37950	$5/2^{-}$	[M1,E2]		0.38 20						
258.14 <i>11</i> 0.58 6 /50.40 1/2 ,5/2 284.09 3 17.8 9 492.297 3/2 ⁻	492.297	3/2 3/2 ⁻	[MI,E2] M1		0.37 20	$\alpha(K) = 0.357; \alpha(L) = 0.0597; \alpha(M) = 0.01386;$					
		-,-				α (N+)=0.00442 Mult.: K/L=5.8 <i>15</i> (1960Ju03), α (K)exp=0.39 8 (1975Ma05)					
294.94 10 0.42 4 750.40 1/2 ⁻ ,3/2 ⁻	455.462	1/2-,3/2-	[M1,E2]		0.25 14	(1975)					
297.07 6 2.8 3 455.462 1/2 ⁻ ,3/2 ⁻	158.37950	5/2-	(E2)		0.1108	$\alpha(K) = 0.0651; \ \alpha(L) = 0.0343; \ \alpha(M) = 0.00870;$					
						Mult.: non observation in ce spectrum of 1960Ju03 excludes a predominantly M1 transition, decay scheme excludes E1					
333.93 4 14.2 7 492.297 3/2-	158.37950	5/2-	M1+E2	+0.22 2	0.271 2	$\alpha(K)$ = 0.2219 15; $\alpha(L)$ =0.03760 14; $\alpha(M)$ =0.00875 3;					
						$\alpha(N+)=0.00279$ Mult: K/M>16 (1960[u02]) $\alpha(K)=0.24.5$					
						(1975Ma05).					
	412.04	5 /Q-			0 10 10	δ : from A ₂ =-0.42 2, A ₄ =+0.01 2 (1962Ba37).					
336.5 <i>I</i> 1.14 <i>II</i> /50.40 1/2 ,3/2 346.89 8 1.07 <i>II</i> 750.40 1/2 3/2	413.84 3	5/2 3/2 ⁻	[M1,E2] [M1,E2]		0.18 10						
403.50 <i>4</i> 13.9 7 403.51 3/2 ⁻	0.0	1/2-	M1+E2	+0.32 2	0.157 1	$\alpha(K) = 0.1286 \ 12; \ \alpha(L) = 0.02190 \ 13; \ \alpha(M) = 0.00510 \ 3; \ \alpha(N+) = 0.00162$					
412.95.9 1.6.2 412.94 5/0-	0.0	1/2-	Eas		0.0427	Mult.: $\alpha(K) \exp[=0.15.5]$ (19/5Ma05).					
415.85 8 1.0 2 415.84 5/2	0.0	1/2	E2		0.0437	$\alpha(\mathbf{K}) = 0.0298; \ \alpha(\mathbf{L}) = 0.01050; \ \alpha(\mathbf{M}) = 0.00201; \ \alpha(\mathbf{N}+) = 0.00082$					
455.46 <i>3</i> 100 <i>5</i> 455.462 1/2 ⁻ ,3/2 ⁻	0.0	$1/2^{-}$	M1		0.1221	$\alpha(K) = 0.1004; \ \alpha(L) = 0.01662; \ \alpha(M) = 0.00385;$					
						α (N+)=0.00123 Mult · K/I = 5 3 13 I/M=4 0 12 (1960In03)					
						$\alpha(K) \exp[=0.12\ 2\ (1975Ma05)].$					
470.77 <i>13</i> 0.31 6 1221.17 $1/2^{(-)}, 3/2^{(-)}$	750.40	$1/2^{-}, 3/2^{-}$	[M1,E2]		0.07 4						
492.30 4 12.3 6 492.297 3/2-	0.0	1/2-	MI		0.0994	$\alpha(K) = 0.0818; \ \alpha(L) = 0.01352; \ \alpha(M) = 0.00313; \ \alpha(N+) = 0.00100$ Mult.: $\alpha(K) \exp = 0.06 \ 3 \ (1975 Ma05), \text{ no } L3 \ (1953 Be79)$					
542.21 5 2.1 2 750.40 1/2 ⁻ ,3/2 ⁻	208.20616	3/2-	[M1,E2]		0.05 3	(1,0,0,0,1,7).					
592.0 [#] 1 0.8 3 750.40 1/2 ⁻ ,3/2 ⁻	158.37950	5/2-	[M1,E2]		0.040 22						
728.86 <i>11</i> 0.36 <i>4</i> 1221.17 $1/2^{(-)}, 3/2^{(-)}$	492.297	3/2-	[M1,E2]		0.024 12						
$7/50.4 I$ 8.4 4 750.40 $1/2^{-},3/2^{-}$	0.0	$1/2^{-1}$	[M1,E2]		0.022 11						
$105.7"$ $2 \approx 0.1$ 1221.17 $1/2^{(-)}, 3/2^{(-)}$	455.462	$1/2^{-}, 3/2^{-}$	[M1,E2]		0.021 11						
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	413.64 .	3/2 ⁻	[M1 F2]		0.019.9						
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	208.20616	3/2-	[M1,E2]		0.011 5						

4

¹⁹⁹Tl ε decay (7.42 h) 1975Ma05,1960Ju03,1962Ba37 (continued)

						$\gamma(^{19}$	⁹ Hg) (contin	nued)
E_{γ}^{\dagger}	$I_{\gamma}^{\dagger b}$	E _i (level)	\mathbf{J}_i^π	E_f	\mathbf{J}_f^{π}	Mult.	α ^c	
1062.8 <i>1</i> 1221.16 <i>10</i>	2.0 <i>2</i> 0.24 <i>3</i>	1221.17 1221.17	$1/2^{(-)}, 3/2^{(-)}$ $1/2^{(-)}, 3/2^{(-)}$	158.37950 0.0	5/2 ⁻ 1/2 ⁻	[M1,E2] [M1,E2]	0.010 <i>4</i> 0.007 <i>3</i>	

[†] From 1975Ma05, unless otherwise noted. [‡] γ line not seen. Estimated from ce spectra of 1960Ju03 based on M1 assignment. [#] γ seen in coincidence spectra only (1975Ma05).

[@] From 1960Ju03.

[&] From 'adopted gammas', unless otherwise indicated.

^{*a*} For possible penetration effect, see comment in ¹⁹⁹Au β^- decay. ^{*b*} For absolute intensity per 100 decays, multiply by 0.124 *12*.

^c Total theoretical internal conversion coefficients, calculated using the BrIcc code (2008Ki07) with Frozen orbital approximation based on γ -ray energies, assigned multipolarities, and mixing ratios, unless otherwise specified.

From ENSDF

 $^{199}_{80}\text{Hg}_{119}\text{-}6$