¹⁹⁹Au β⁻ decay (3.139 d) 1989Ch45,1977Dr06,1975Bo05

History							
Туре	Author	Citation	Literature Cutoff Date				
Full Evaluation	Balraj Singh	NDS 108, 79 (2007)	15-Oct-2006				

Parent: ¹⁹⁹Au: E=0.0; $J^{\pi}=3/2^+$; $T_{1/2}=3.139 \text{ d}$ 7; $Q(\beta^-)=452.0 \text{ }6$; $\%\beta^-$ decay=100.0 $\beta\gamma(t)$, $\gamma\gamma(t)$: 1974Do01, 1972Si42, 1971Si20, 1967Ba27, 1966Ra28, 1964Li12, 1963Li08. $\beta\gamma(\theta)$: 1975Ve14, 1965DeZZ, 1962Ge10, 1961El01. (electron) $\gamma(\theta)$: 1968Th03, 1965Th03. B(ce,transverse pol)(θ): 1962Bl05. $\beta\gamma(\text{circ pol})(\theta)$: 1971Va15.

¹⁹⁹Hg Levels

E(level) [†]	$J^{\pi \ddagger}$	T _{1/2}	Comments
0.0	$1/2^{-}$		
158.37859 10	5/2-	2.46 ns 3	T _{1/2} : weighted average of 2.49 ns 3 (1971Si20), 2.38 ns 7 (1967Ba27), 2.37 ns 7 (1966Ra28), 2.42 ns 15 (1963Li08), 2.35 ns 20 (1952Be26).
208.20494 10	3/2-	69 ps 3	$T_{1/2}$: weighted average of 71 ps 5 (1974Do01), 70 ps 15 (1972Si42), 71 ps 7 (1966Ra28), 66 ps 6 (1963Li08,1964Li12).

[†] From $E\gamma's$.

[‡] From 'Adopted Levels'.

β^- radiations

Eβ, Iβ, spectrum shape: 1968Be06, 1966Le03, 1965Ke04, 1955Ha50, 1952Be26, 1952De34. B(longitudinal polarization): 1968Be06, 1965Lo06.

E(decay)	E(level)	$I\beta^{-\dagger\ddagger}$	Log ft	Comments		
(243.8 6)	208.20494	21.5 4	6.118 9	av Eβ=67.21 21		
				E(decay), $I\beta^-$: from F-K plot: $E\beta=250$, $I\beta=22.4\%$ (1965Ke04), $E\beta=251$, $I\beta=24.3\%$ (1955Ha50), $E\beta=250$ 15 (1952Be26).		
				$B(208\gamma)(\theta)$ is isotropic (1975Ve14,1962Ge10,1961El01).		
				Transverse polarization of $(\beta^{-})(ce(K) 208\gamma)$ (1962Bl05).		
				Circular polarization of $(\beta^{-})(208\gamma)$ (1971Va15).		
(293.6 6)	158.37859	72.0 13	5.850 9	av $E\beta = 82.29\ 22$		
				E(decay), $I\beta^-$: from F-K plot: E β =295.8, $I\beta$ =71.6% (1965Ke04), E β =302, $I\beta$ =69.3% (1955Ha50), E β =291 5 (1952De34), E β =297 10 (1952Be26).		
				$B(158\gamma)(\theta)$ is isotropic (1975Ve14,1962Ge10,1961El01).		
(452.0 6)	0.0	6.5 13	7.50 9	av $E\beta = 132.77\ 24$		
				E(decay): from F-K plot: $E\beta$ =453 2 (1968Be06), 460 6 (1966Le03), 461.7		
				(1965Ke04); β -group has non statistical shape: $\alpha' = -0.24 \ 3$ (1968Be06), $-0.3 \ 1$ (1966Le03).		
				$I\beta^-$: unweighted average of 6.0% (1965Ke04), 6.4% (1955Ha50), 7% (1952De34). ΔIβ=20% assigned by evaluator.		
				Longitudinal polarization: $p=-0.84 \text{ v/c} \ 3 \ (1968\text{Be06}), \ p=-0.83 \text{ v/c} \ 5 \ (1965\text{Lo06});$ based on $p(^{32}\text{P})=-1.0 \text{ v/c}.$		

[†] From I(γ +ce) balance at each level and measured I β (to g.s.)=6.5 13.

[‡] Absolute intensity per 100 decays.

¹⁹⁹Au β^- decay (3.139 d) 1989Ch45,1977Dr06,1975Bo05 (continued)

$\gamma(^{199}\text{Hg})$

I γ normalization: From Ti(208 γ +158 γ)=100–I β (g.s.), (I β ⁻(g.s.)=6.5 13).

Eγ, Iγ: 1989Ch45, 1991Ma65, 1975Bo05, 1972De67, 1972Si42, 1970Gr13, 1968Mu09, 1965Ke04, 1964Ka17, 1963Ha16, 1961Ha11, 1960De15, 1958Av89, 1958Cr09, 1951Sh58, 1952Si47.

Ice, α and ce-ratios: 1977Dr06, 1974Do01, 1965Ke04, 1964He19, 1960De17, 1960Na06, 1958Ba36, 1958Cr09, 1952De34, 1952Si47, 1951Sh58, 1950Hi59.

I(K x ray)=43.65 (1989Ch45), 48 2 (1963Ha16); I(L x ray)=36.96 (1989Ch45), 56 4 (1963Ha16). Measured I(K x ray) and L x ray subshell ratios (1989Ch45). (I(x) relative to $I(158\gamma)=100$).

1977Dr06 calculated the α for the transitions in this decay using Hartree-Fock wave functions. They also analyzed their experimental ce-ratios allowing for the nuclear structure effect in the M1 component. Their deduced δ and λ are given below in a footnote to the individual gammas. However, the experimental data can also be fitted without the penetration factor using the theoretical α of 1968Ha53.

E_{γ}^{\dagger}	$I_{\gamma}^{\ddagger a}$	E_i (level)	\mathbf{J}_i^{π}	\mathbf{E}_{f}	\mathbf{J}_f^{π}	Mult.	$\delta^{\#}$	$\alpha^{@}$	Comments
49.82635 12	0.901 23	208.20494	3/2-	158.37859	5/2-	M1+E2	-0.044 ^{&} 4	11.7 ^{&}	α (L1)=7.85; α (L2)=0.895 19; α (L3)=0.176 19; α (L)=8.92 4; α (M)=2.08 1
150 27051 10	100.0.8	159 27950	5/2-	0.0	1/2-	EQ		0.014	Mult., δ : L1:L2:L3=7.85 <i>12</i> : 0.902 <i>20</i> : 0.157 <i>23</i> , M1:M2:M3= 1.77 <i>4</i> : 0.244 <i>14</i> : 0.063 <i>18</i> (1977Dr06), sign from: δ =-0.017 <i>6</i> from cey(θ) (1968Th03).
158.57851 10	100.0 8	158.57859	5/2	0.0	1/2	E2		0.914	$\alpha(\mathbf{K})=0.296; \alpha(\mathbf{L1})=0.0382;$ $\alpha(\mathbf{L2})=0.251;$ $\alpha(\mathbf{L3})=0.172;$ $\alpha(\mathbf{M})=0.119;$ $\alpha(\mathbf{N}+)=0.0374$ \mathbf{I}_{γ} : absolute measurement with $4\pi(\beta\gamma)$: $\mathbf{I}_{\gamma}=36.8\%$ 11 (1963Ha16). Mult.: $\alpha(\mathbf{K})$ exp=0.284 <i>11</i> , $\alpha(\mathbf{L1})$ exp=0.0387 <i>8</i> , $\alpha(\mathbf{L2})$ exp=0.252 <i>3</i> , $\alpha(\mathbf{L3})=0.172,$ $\alpha(\mathbf{M})$ exp=0.121 <i>8</i> , $\alpha(\mathbf{N})$ exp=0.0304 <i>20</i> , normalized to theoretical $\alpha(\mathbf{L3})=(1077) - 765)$
208.20481 12	21.8 3	208.20494	3/2-	0.0	1/2-	M1+E2	-0.388 ^{&} 9	0.937 ^{&}	$\alpha(\text{K})=0.751 \ 4; \ \alpha(\text{L})=0.142; \alpha(\text{M})=0.0334 \ 2; \alpha(\text{N}+)=0.0106 \text{Mult.,} is L1:L2:L3=0.114 \ 2: 0.0218 \ 5: 0.00692 \ 10, M1:M2:M3= 0.0261 \ 8: 0.0054 \ 6: 0.0021 \ 3, K:L:M=0.74 \ 6: 0.142 \ 2: 0.0337 \ 10 \text{ normalized to } theoretical \ \alpha(\text{L}3) (1977Dr06); sign of \ \delta from Coul ex. theory: \alpha(\text{L}1):\alpha(\text{L}2):\alpha(\text{L}3)=0.114 \ 1: \ 0.0210 \ 3: \ 0.0069 \ 2, \alpha(\text{M1}):\alpha(\text{M2}):\alpha(\text{M3})= $

Continued on next page (footnotes at end of table)

¹⁹⁹Au β^- decay (3.139 d) 1989Ch45,1977Dr06,1975Bo05 (continued)

$\gamma(^{199}$ Hg) (continued)

 $E_{\gamma}^{\dagger} = E_i$ (level)

Comments

1: 0.00536 *9*: 0.00183 *6*.

[†] From curved-crystal measurement of 1975Bo05, and as revised in the recommended values of 2000He14. The curved crystal spectrometer measurements have been adjusted for the change in ¹⁹⁸Au calibration standard (1980De40,2000He14).

[‡] From 1989Ch45.

[#] Deduced from ce(L)- and ce(M)-subshell ratios of 1977Dr06 using theoretical values of 1968Ha53.

[@] Theoretical α from 1968Ha53 for the multipolarity and δ given.

& 1977Dr06 analyzed the Ice subshell ratios including nuclear penetration effects in the wave functions. The results: 50 keV γ : δ =0.039 4, nuclear structure parameter λ =2.4 10; 208 keV γ : δ =0.350 13, nuclear structure parameter λ =3.8 5.

^a For absolute intensity per 100 decays, multiply by 0.400 6.

¹⁹⁹Au β⁻ decay (3.139 d) 1989Ch45,1977Dr06,1975Bo05

