¹⁹⁹Pt β⁻ decay (30.8 min) 2004Mi09,1969Ok02,1974HeYW

		History	
Туре	Author	Citation	Literature Cutoff Date
Full Evaluation	Balraj Singh	NDS 108, 79 (2007)	15-Oct-2006

Parent: ¹⁹⁹Pt: E=0.0; $J^{\pi}=5/2^-$; $T_{1/2}=30.8 \text{ min } 4$; $Q(\beta^-)=1703 \ 3$; $\%\beta^-$ decay=100.0

2004Mi09: measured I γ , emission probability of 543 γ .

1974HeYW: Measured $E\gamma$, $I\gamma$.

1970Ba37: Measured E γ , I γ , Ice.

1969Ok02: Measured E γ , I γ , Ice, $\gamma\gamma$, $\gamma\gamma(\theta)$.

1967Ba45: Measured E γ , I γ , Ice, $\beta\gamma$, $\gamma\gamma$, B(ce), B(ce)(t), (ce)(ce)(t), (ce) $\gamma(t)$.

1966Pr05: Measured E γ , I γ , Ice, $\gamma\gamma(\theta)$, $\gamma\gamma(t)$.

1965Bl18: Measured $E\gamma$, $I\gamma$.

1964Jo09: measured $\gamma\gamma$, $\beta\gamma$, $\beta\gamma$ (t).

1956Le44: measured $\gamma\gamma$, $\beta\gamma$.

¹⁹⁹Au Levels

E(level) [†]	$J^{\pi \ddagger}$	$T_{1/2}^{\#}$	Comments
0.0	$3/2^+$	12 2	$T_{1} = 1.5 \times 1.46 \times 1.2 \times 1.06 \times 1.1 \times 1.4 \times 1.067 \times 1.2 \times 1.067 \times 1.1 \times 1.067 \times 1.$
77.170 21	1/2*	1.5 ns 2	$I_{1/2}$: av: 1.40 ns 12 (1900PT05), 1.1 ns 1 (1907Ba05).
317.174 24	5/2	<55 ps	
323.605 25	3/2+	35 ps 20	
493.76 <i>3</i>	$(7/2)^+$	<35 ps	
542.884 23	5/2+	<30 ps	
548.86 4	$(11/2)^{-}$	0.44 ms 3	%IT=100
			$T_{1/2}$: isomeric-state $T_{1/2}$ evaluated from decay of 494 γ (1968Bo22).
734.64 <i>3</i>	7/2-	0.36 ns 4	7/2[514] orbital.
791.760 25	3/2+	<50 ps	
822.7 3	$1/2^{+}$		
968.29 4	$3/2^+, 5/2^+$	<100 ps	
1070.02 14	$3/2^+, 5/2^+$		
1103.99 13	$(3/2, 5/2, 7/2)^{(+)}$		
1159.01 7	$(3/2^+, 5/2^+, 7/2^+)$		
1249.4 3	$3/2^+.5/2^+.7/2^+$		
1396.22 19	5/2+,7/2+		

 † From least-squares fit to Ey's.

[‡] From 'Adopted Levels'.

[#] From $\beta\gamma(t)$, $\gamma\gamma(t)$ (1967Ba45), unless otherwise noted.

β^{-} radiations

Four β groups resolved (E β =1690 50, I β =63%; E β =1380 50, I β ≈4%; E β =1140 50, I β =14%; E β =900 50, I β =18%) (1964Jo09). Also: 1956Le44. However, except for the 1690-keV β , the β 's are significant admixtures of decays to several levels.

$(307 3)$ 1396.22 $0.0321 13$ $7.07 2$ av $E\beta=86.22 93$ $(454 3)$ 1249.4 $0.0093 6$ $8.16 3$ av $E\beta=133.2 10$ $(544 3)$ 1159.01 $0.086 3$ $7.46 2$ av $E\beta=163.7 11$ $(599 3)$ 1103.99 $0.077 3$ $7.64 2$ av $E\beta=182.7 11$ $(633 3)$ 1070.02 $0.069 3$ $7.77 2$ av $E\beta=194.6 11$ $(735 3)$ 968.29 $1.037 13$ $6.82 1$ av $E\beta=231.0 11$	

Continued on next page (footnotes at end of table)

¹⁹⁹Pt β^- decay (30.8 min) 2004Mi09,1969Ok02,1974HeYW (continued)

β^- radiations (continued)

E(decay)	E(level)	Iβ ^{−†}	Log ft	Comments
(880 3) (911 3) (968 3) (1160 3) (1209 3) (1379 3) (1386 3) (1626 [‡] 3) (1703 3)	822.7 791.760 734.64 542.884 493.76 323.605 317.174 77.170 0.0	0.084 3 4.26 5 6.36 7 12.01 12 0.37 7 1.54 10 3.28 7 <1.3 70.7 12	$\begin{array}{c} 8.60^{1u} \ 2 \\ 6.53 \ l \\ 6.45 \ l \\ 6.45 \ l \\ 8.03 \ 9 \\ 7.62 \ 3 \\ 7.30 \ l \\ > 8.8^{1u} \\ 6.30 \ l \end{array}$	av $E\beta=287.6$ 11 av $E\beta=296.4$ 12 av $E\beta=318.1$ 12 av $E\beta=392.6$ 12 av $E\beta=392.6$ 12 av $E\beta=412.0$ 12 av $E\beta=480.3$ 13 av $E\beta=482.9$ 13 av $E\beta=567.6$ 12 av $E\beta=613.3$ 13 $E\beta=160.50$ 18=63 (10641000)

[†] Absolute intensity per 100 decays.
[‡] Existence of this branch is questionable.

 $\gamma(^{199}\mathrm{Au})$

Iγ normalization, I(γ+ce) normalization: from absolute emission probability=0.1174 7 for 543.0γ (2004Mi09) using $4\pi\beta$ -γ coin system. In earlier evaluations (1994Ar13,1988Sc02), Iγ normalization=0.147 25 based on %Iβ(g.s.)=63 6 (1964Jo09) and Σ(I(γ+ce) of γ's to g.s.)+Iβ(g.s.)=100.

E_{γ}^{\dagger}	$I_{\gamma}^{\ddagger d}$	E _i (level)	\mathbf{J}_i^{π}	E_f	\mathbf{J}_{f}^{π}	Mult. [#]	δ	α ^e	$I_{(\gamma+ce)}^{d}$	Comments
55.15 5	0.106 <i>CA</i>	548.86	(11/2) ⁻	493.76	(7/2)+	M2+E3	0.11 6	334 40	35.4 5	ce(L)/(γ+ce)=0.735 3; ce(M)/(γ+ce)=0.197 3; α (N+)/T _{1/2} =0.0642 7 E _γ : from ce data (1967Ba45). I _(γ+ce) : calculated from intensity balance in the level scheme, no direct β ⁻ feeding is expected to this level (2U transition). I _γ : 0.106 <i>19</i> from I(γ+ce) and α. Others: 0.10 3 from I(ce(L)) (1967Ba45), α(L)=247 43;<0.15 from γ spectrum (1967Ba45). Mult.,δ: from L1:L2:L3=100 5:16 2:36 5 (1967Ba45). Additional information 9.
77.20 [@] 3	10.2 20	77.170	1/2+	0.0	3/2+	M1+E2	0.22 +6-2	3.5 4		α(L)= 2.6 3; α(M)= 0.63 7; α(N+)= 0.197 21 Eγ: direct measurement by 1969Ok02, deduced from ce spectra of 1967Ba45. Iγ: average of 9 3 (1966Pr05) and 11.5 30 (calculated from ce intensity of 1967Ba45). Mult.,δ: deduced from L1:L2:L3=100:27 5:14 4 (1967Ba63).
170.6 ^{cg} 10	0.15 ^c 8	493.76	$(7/2)^+$	323.605	3/2+	[E2]		0.664		Additional information 1. $\alpha(K) = 0.253; \alpha(L) = 0.308; \alpha(M) = 0.0791;$
176.2 ^{cg} 10	0.19 ^c 10	493.76	$(7/2)^+$	317.174	5/2+	[M1,E2]		1.0 5		$\alpha(M+)=0.02405$ $\alpha(K)=0.75; \alpha(L)=0.242; \alpha(M)=0.05811;$
185.80 <i>3</i>	23.74 22	734.64	7/2-	548.86	(11/2)-	E2		0.490		$\alpha(K^{+})=0.016$ S $\alpha(K)=0.206; \alpha(L)=0.213; \alpha(M)=0.0546;$ $\alpha(N+)=0.0170$ Mult.: from K/L=1.0 2 (1966Pr05), $\alpha(K)$ exp=0.20 2 (1970Ba37).
191.69 <i>3</i>	15.04 <i>15</i>	734.64	7/2-	542.884	5/2+	E1		0.0807		$\alpha(K) = 0.0660; \ \alpha(L) = 0.0113; \ \alpha(M) = 0.00260; \alpha(N+) = 0.00080$ Mult.: from $\alpha(K) \exp = 0.070 \ 7 \ (1970Ba37), 0.051 + 12 - 6 \ (1967Ba45). (192\gamma)(543\gamma)(\theta): A2=+0.060 18, A4=+0.01424 \ (1969Ok02).Additional information 11.$

ω

				199 Pt β^- o	decay (3	0.8 min)	2004Mi09,19	690k02,197	74HeYW (continued)			
	γ ⁽¹⁹⁹ Au) (continued)											
${\rm E_{\gamma}}^{\dagger}$	$I_{\gamma}^{\ddagger d}$	E _i (level)	\mathbf{J}_i^π	E_f	\mathbf{J}_f^{π}	Mult. [#]	δ	α^{e}	Comments			
219.36 4	2.60 4	542.884	5/2+	323.605	3/2+	M1+E2	0.60 10	0.67 4	$\alpha(K)=0.53 4; \ \alpha(L)=0.1099 4; \ \alpha(M)=0.0261 1; \ \alpha(N+)=0.00817$			
									Mult., δ : from α (K)exp=0.52 5 (1970Ba37). Additional information 5.			
225.36 4	1.11 3	542.884	5/2+	317.174	5/2+	M1+E2	0.6 2	0.62 7	$\alpha(K)=0.49$ 7; $\alpha(L)=0.100$ 1; $\alpha(M)=0.0238$; $\alpha(N+)=0.0074$ E _y : poor fit; level-energy difference=225.71.			
									Additional information 6.			
$\begin{array}{c} 240.01 \ 6 \\ 240.9^{g} \ 10 \end{array}$	1.10 <i>3</i> <0.4	317.174 734.64	5/2+ 7/2 ⁻	77.170 493.76	$1/2^+$ (7/2) ⁺	[E2] [E1]		0.207 0.0459	$\alpha(K) = 0.109; \ \alpha(L) = 0.0737; \ \alpha(M) = 0.0187; \ \alpha(N+) = 0.00583$ $\alpha(K) = 0.0377; \ \alpha(L) = 0.00628; \ \alpha(M) = 0.00145;$ $\alpha(N+) = 0.00044$			
									E_{γ} , I_{γ} : observed as weak line in γ and ce spectra (1967Ba45); also: 1965B118.			
246.46 3	15.42 7	323.605	3/2+	77.170	$1/2^{+}$	M1+E2	< 0.45	0.56 4	$\alpha(K)=0.45 \ 3; \ \alpha(L)=0.0792 \ 12; \ \alpha(M)=0.0184 \ 2; \ \alpha(N+)=0.00578 \ 5$			
									Mult., δ : from α (K)exp=0.45 4 (1970Ba37); other: α (K)exp=0.48 8 (1967Ba45), -0.50< δ <0.22 from $\gamma\gamma(\theta)$ (1969Ok02); K/L=4.5 10 (1966Pr05).			
208 2 ^a 3	0.25 4	701 760	3/2+	403 76	$(7/2)^+$	[E2]		0.105	Additional information 3. $\alpha(K) = 0.0635; \ \alpha(M) = 0.00702; \ \alpha(N+1) = 0.00247$			
290.2 5	0.25 4	791.700	5/2	495.70	(1/2)		0 (0 10	0.105	I_{γ} : weighted average of values from 1967Ba45 and 1969Ok02.			
317.03 4	33.06 11	317.174	5/21	0.0	3/21	M1+E2	-0.60 10	0.241 14	$\alpha(\mathbf{K})=0.194\ 13;\ \alpha(\mathbf{L})=\ 0.0362\ 10;\ \alpha(\mathbf{M})=\ 0.0085\ 2;\ \alpha(\mathbf{N}+)=0.0027\ 1$			
									E _γ : poor fit; level-energy difference=317.17. Mult.,δ: from α (K)exp=0.194 <i>15</i> (1970Ba37), 0.194 <i>25</i> (1967Ba45), $\gamma\gamma(\theta)$ (1969Ok02); other: α (K)exp=0.186 <i>23</i>			
									(1969Ok02); K/L=5.4 6 (1969Ok02), 5 <i>I</i> (1966Pr05). Additional information 2.			
323.60 6	1.82 3	323.605	3/2+	0.0	3/2+	[M1,E2]		0.18 10	$\alpha(K) = 0.14 \ 9; \ \alpha(L) = 0.031 \ 7; \ \alpha(M) = 0.0073 \ 15; \ \alpha(N+) = 0.0023 \ 5$			
417.61 5	2.55 3	734.64	7/2-	317.174	5/2+	[E1]		0.0127	$\alpha(K)=0.0105; \ \alpha(L)=0.00167; \ \alpha(M)=0.000384; \ \alpha(N+)=0.00012$			
425.34 7	1.02 4	968.29	3/2+,5/2+	542.884	5/2+	[M1,E2]		0.09 5	I _γ : from branching in (n,γ) I _γ =1.28 6, possibly a doublet. α (K)=0.07 4; α (L)=0.014 5; α (M)=0.0032 10; α (N)=0.0010 3			
465.76 5	6.2 3	542.884	5/2+	77.170	$1/2^{+}$	E2		0.0311	$\alpha(N+)=0.0010$ 5 $\alpha(K)=0.0222; \ \alpha(L)=0.00667; \ \alpha(M)=0.00163; \ \alpha(N+)=0.00051$			
									I_{γ} : weighted av: 6.2 3 (1969Ok02), 6.3 5 (1970Ba37), 6.3 9 (1974HeYW), 6.7 5 (1967Ba45). 2004Mi09 give $I_{\gamma}(468.09+465.76)=13.00$ 9.			
									Mult.: from α (K)exp=0.018 <i>3</i> (1970Ba37),<0.03 (1967Ba45). Additional information 7.			
468.09 5	6.8 <i>3</i>	791.760	3/2+	323.605	3/2+	M1(+E2)	<0.45	0.098 7	$\alpha(K)=0.0815; \alpha(L)=0.01357; \alpha(M)=0.0031114; \alpha(N+)=0.000985$			
									I_{γ} : weighted average of values from 1969Ok02 and			

4

I

			¹⁹⁹ Pt β^- dec	cay (30.8 n	nin) 2	2004Mi09,19	69Ok02,1974He	YW (continu	ed)
					$\gamma(^1$	⁹⁹ Au) (conti	nued)		
E_{γ}^{\dagger}	$I_{\gamma}^{\ddagger d}$	E _i (level)	J_i^π	E_f	\mathbf{J}_f^{π}	Mult. [#]	δ	α^{e}	Comments
									1974HeYW. 2004Mi09 give $I\gamma(468.09+465.76)=13.00 \ 9.$ Mult., δ : from α (K)exp=0.080 δ (1970Ba37), 0.079 18 (1969Ok02), 0.081 25 (1967Ba45); and $\gamma\gamma(\theta)$ (1969Ok02). (468 γ)(246 γ)(θ): A ₂ =-0.109, A ₄ =+0.01 3 (1969Ok02). Additional information 12.
474.68 ^{<i>f</i> & 4}	7.79. ^f 5	791.760	3/2+	317.174	5/2+	M1+E2	0.12 2	0.0997 4	$\begin{aligned} &\alpha(\mathbf{K}) = 0.0821 \ 4; \ \alpha(\mathbf{L}) = 0.0134; \\ &\alpha(\mathbf{M}) = 0.00311; \ \alpha(\mathbf{N}+) = 0.00098 \\ &\text{Mult.,} \delta: \ \text{from } \alpha(\mathbf{K}) \exp = 0.090 \ 9 \ (1970\text{Ba37}), \\ &0.095 \ 20 \ (1969\text{Ok}02), \ 0.10 \ 3 \ (1967\text{Ba45}) \\ &\text{and } \gamma\gamma(\theta) \ (1969\text{Ok}02). \\ &(475\gamma)(317\gamma)(\theta): \ A_2 = +0.15 \ 3, \ A_4 = -0.01 \ 4 \\ &(1969\text{Ok}02). \\ &\text{Additional information } 13. \end{aligned}$
474.68 <i>f&g 4</i> 493.75 <i>3</i>	f 38.04 20	968.29 493.76	3/2 ⁺ ,5/2 ⁺ (7/2) ⁺	493.76 0.0	(7/2) ⁺ 3/2 ⁺	E2		0.0269	α (K)=0.0195; α (L)=0.00565; α (M)=0.00136; α (N+)=0.00042 Mult., δ : from α (K)exp=0.019 <i>3</i> (1970Ba37),
505.5 ^{<i>a</i>} 3 542.98 <i>4</i>	0.70 <i>2</i> 100.0 <i>6</i>	822.7 542.884	1/2 ⁺ 5/2 ⁺	317.174 0.0	5/2+ 3/2+	[E2] M1(+E2)	-0.06 +7-10	0.0254 0.0709 <i>10</i>	0.017 <i>3</i> (1969Ok02), 0.23 <i>5</i> (1967Ba45). Additional information 4. $\alpha(K) = 0.0186; \alpha(L) = 0.00517$ $\alpha(K) = 0.0583 9; \alpha(L) = 0.00947 11$ Mult., δ : from $\gamma\gamma(\theta)$ (1969Ok02) and $\alpha(K)\exp=0.059 7$ (1970Ba37), 0.062 7 (1969Ok02), 0.062 10 (1967Ba45); δ from $\gamma\gamma(\theta)$; ; K/L=6 (1966Pr05), 7.3 8 (1969Ok02).
609.8 ^b 6 644.63 7	0.104 <i>12</i> 0.55 <i>2</i>	1103.99 968.29	$(3/2,5/2,7/2)^{(+)}$ $3/2^+,5/2^+$	493.76 323.605	$(7/2)^+$ $3/2^+$	[M1,E2] [M1,E2]		0.034 <i>18</i> 0.030 <i>15</i>	Additional information 8. $\alpha(K)=0.028 \ 15; \ \alpha(L)=0.0050 \ 20$ $\alpha(K)=0.024 \ 13; \ \alpha(L)=0.0043 \ 17$
649.8 ⁰ 15 665.0 1	0.063 <i>11</i> 0.385 <i>14</i>	968.29 1159.01	$3/2^+, 5/2^+$ $(3/2^+, 5/2^+, 7/2^+)$	317.174 493.76	$5/2^+$ $(7/2)^+$	[M1,E2]		0.029 15	$\alpha(K)=0.024 \ 13; \ \alpha(L)=0.0042 \ 17$
714.55 4	12.34 8	791.760	3/2+	77.170	1/2+	M1+E2	<0.6	0.032 3	α(K)=0.026 3; α(L)=0.0043 4 Mult.,δ: from α(K)exp=0.026 5 (1970Ba37); also γγ(θ) (1969Ok02). (714γ)(77γ)(θ): A ₂ =-0.003 18, A ₄ =-0.044 24 (1969Ok02). Additional information 14
746.4 2 752.9 2 780.5 <i>3</i>	0.182 <i>13</i> 0.311 <i>16</i> 0.205 <i>12</i>	1070.02 1070.02 1103.99	$3/2^+, 5/2^+$ $3/2^+, 5/2^+$ $(3/2, 5/2, 7/2)^{(+)}$	323.605 317.174 323.605	3/2+ 5/2+ 3/2+	[M1,E2] [M1,E2] [M1,E2]		0.021 <i>10</i> 0.020 <i>10</i> 0.019 <i>9</i>	$\alpha(K)=0.017 \ 9; \ \alpha(L)=0.0029 \ 12 \\ \alpha(K)=0.017 \ 9; \ \alpha(L)=0.0029 \ 12 \\ \alpha(K)=0.015 \ 8; \ \alpha(L)=0.0026 \ 11 $

S

γ ⁽¹⁹⁹ Au) (continued)											
E_{γ}^{\dagger}	$I_{\gamma}^{\ddagger d}$	E _i (level)	J_i^π	E_f	\mathbf{J}_f^{π}	Mult. [#]	δ	α ^e	Comments		
786.8 2 791.74 <i>4</i>	0.153 <i>12</i> 7.07 <i>5</i>	1103.99 791.760	$(3/2,5/2,7/2)^{(+)}$ $3/2^+$	317.174 0.0	5/2 ⁺ 3/2 ⁺	[M1,E2] M1(+E2)	<0.46	0.018 <i>9</i> 0.0253 <i>15</i>	$\alpha(K)=0.015\ 7;\ \alpha(L)=0.0026\ 10$ $\alpha(K)=0.0205\ 15;\ \alpha(L)=0.00337\ 17$ Mult., δ : from $\alpha(K)$ exp=0.023 4 (1970Ba37); theory: $\alpha(K)=0.0205\ 15$. Additional information 15.		
835.5 <i>1</i> 842 4 2	0.163 <i>10</i> 0.118 9	1159.01 1159.01	$(3/2^+, 5/2^+, 7/2^+)$ $(3/2^+, 5/2^+, 7/2^+)$	323.605	$3/2^+$ $5/2^+$						
891.30 15	0.161 6	968.29	$(5/2^{+}, 5/2^{+}, 7/2^{-})$	77.170	$1/2^+$	[M1,E2]		0.014 6	$\alpha(K)=0.011$ 5; $\alpha(L)=0.0019$ 7		
902.0 ^b 6 968.32 5	0.070 <i>6</i> 6.85 <i>5</i>	1396.22 968.29	5/2 ⁺ ,7/2 ⁺ 3/2 ⁺ ,5/2 ⁺	493.76 0.0	(7/2) ⁺ 3/2 ⁺	[M1,E2] (M1,E2)		0.013 6 0.011 5	$\begin{array}{l} \alpha(\text{K}) = 0.011 \ 5; \ \alpha(\text{L}) = 0.0018 \ 7 \\ \alpha(\text{K}) = 0.009 \ 4; \ \alpha(\text{L}) = 0.0015 \ 6 \\ \text{Mult.: from } \alpha(\text{K}) \exp[=0.010 \ 5 \ (1970\text{Ba37}); \text{ theory:} \\ \alpha(\text{K})(\text{M1}) = 0.013, \ \alpha(\text{K})(\text{E1}) = 0.0020, \\ \alpha(\text{K})(\text{E2}) = 0.0050. \\ \text{Additional information 16.} \end{array}$		
992.3 ^b 7	0.085 7	1070.02	3/2+,5/2+	77.170	1/2+	[M1,E2]		0.010 5	$\alpha(K)=0.009 4; \alpha(L)=0.0014 6$		
1072.7 2	0.137 7	1396.22	5/2+,7/2+	323.605	3/2+	[M1,E2]		0.009 4			
1077.0° 14 1104.0 2 1159.2 5	0.064 5 0.182 8 0.069 5	1396.22 1103.99 1159.01	$5/2^+, 7/2^+ (3/2, 5/2, 7/2)^{(+)} (3/2^+, 5/2^+, 7/2^+)$	317.174 0.0 0.0	5/2 ⁺ 3/2 ⁺ 3/2 ⁺	[M1,E2] [M1,E2]		0.009 <i>4</i> 0.008 <i>3</i>			
1249.4 <i>3</i>	0.079 5	1249.4	3/2+,5/2+,7/2+	0.0	$3/2^{+}$	[M1,E2]		0.006 2			

[†] From 1974HeYW, unless otherwise noted.

[‡] From 2004Mi09 unless otherwise stated. Weighted average of values from 1974HeYW and 1969Ok02 are in good agreement with those in 2004Mi09 for most of the gamma rays, but the values from 2004Mi09 are adopted here due to the higher precision in this work.

[#] Deduced from $\alpha(K)$ exp or $\alpha(L)$ exp ratios for most γ 's (1967Ba45,1970Ba37,1969Ok02,1966Pr05) and from $\gamma\gamma(\theta)$ of 1969Ok02. 1967Ba45 normalized $\alpha(K)$ exp to $\alpha(K)(185.79\gamma)=0.197$ assuming pure E2 transition (adopted $\alpha(K)(185.79\gamma)=0.205$). 1970Ba37 normalized $\alpha(K)$ exp to $\alpha(K)(542.98\gamma)=0.059$ 7 assuming pure M1 transition (adopted value $\alpha(K)(542.98\gamma)=0.047$ 16). However, this normalization gives good agreement with theoretical $\alpha(K)$ for other pure transitions: 185.79 γ (E2 from K/L), 191.69 γ (E1 from $\alpha(K)$ exp of 1967Ba45). 1969Ok02 used other standard sources for calibration.

[@] Interference from ¹⁹⁷Au and K x-rays.

[&] Main placement from 792 level established from coin. Possible placement from 968 level supported only by energy fit; however, (n,γ) high resolution data do not support the placement from 968 level. Therefore, all the intensity is assigned to placement from the 792 level.

^a From 1967Ba45.

^b From 1969Ok02.

^{*c*} γ reported by 1967Ba45 only.

^d For absolute intensity per 100 decays, multiply by 0.1174 7.

^{*e*} Total theoretical internal conversion coefficients, calculated using the BrIcc code (2008Ki07) with Frozen orbital approximation based on γ -ray energies, assigned multipolarities, and mixing ratios, unless otherwise specified.

¹⁹⁹Pt $β^-$ decay (30.8 min) 2004Mi09,1969Ok02,1974HeYW (continued)

¹⁹⁹Pt β^- decay (30.8 min) 2004Mi09,1969Ok02,1974HeYW (continued)

 $\gamma(^{199}Au)$ (continued)

-

^f Multiply placed with intensity suitably divided.
 ^g Placement of transition in the level scheme is uncertain.

8

 $8^{-021} n V_{661}^{62}$