$^{198}_{86}$ Rn $_{112}$

²⁰²Ra α decay 2014Ka23,2005Uu02

	History		
Туре	Author	Citation	Literature Cutoff Date
Full Evaluation	Huang Xiaolong and Kang Mengxiao	NDS 133, 221 (2016)	1-Dec-2015

Parent: ²⁰²Ra: E=0; $J^{\pi}=0^+$; $T_{1/2}=3.8 \text{ ms} + 13-8$; $Q(\alpha)=7897\ 20$; % $\alpha \text{ decay}\approx 100.0$

 202 Ra-T_{1/2}: Measured by 2014Ka23. Others: 16 ms +30-7 (2005Uu02), 0.7 ms +3.3-0.3 (1996Le09).

 202 Ra-E α =7722 keV 7 (2014Ka23), 7740 keV 20, 7860 keV 60 (1996Le09).

2014Ka23: ²⁰²Ra produced in ¹⁴⁹Sm(⁵⁶Fe,3n) at E(⁵⁶Fe)= 244-275 MeV beam from GSI accelerator facility. Target=370 μ g/cm² thick enriched to 96.9% in ¹⁴⁹Sm, and backed with 40 μ g/cm² thick carbon backing and covered with a 10 μ g/cm² layer of carbon. It was mounted on a rotating wheel. Evaporation residues were separated using SHIP facility at GSI, and implanted into the detection system consisting of 16-strip position sensitive Si detectors (PSSD), a pack of six Si strip detectors (BOX) at the back to detect escaping α particles, and three time-of-flight detectors in front of PSSDs. Measured position and time correlations between evaporation residues (Er) and α events, E α , half-lives of ground states of ²⁰²Ra and ¹⁹⁸Rn, Er- α - α correlations. Comparison with previous experimental results.

Cross section for production of ²⁰²Ra=0.2 nb *1* at 244 MeV incident beam energy (2014Ka23).

A total of 16 (Er) $\alpha\alpha$ correlated events were assigned to ${}^{202}Ra \rightarrow {}^{198}Rn \rightarrow {}^{194}Po \rightarrow {}^{190}Pb$ decay chain (2014Ka23).

The Gross Theory of β decay calculations of 1973Ta30 predict the partial β half-life to be ≈ 50 s. Any β branch (calculated to be <0.008%) is, therefore, ignored in the calculations, and $\%\alpha(^{202}Ra)=100$ is taken.

Added-in-Proof: 1997Mo25 obtain $T_{1/2}(\varepsilon + \beta^+) = 1.9605$ s from their calculations. This partial half-life gives $\%\varepsilon + \beta^+ = 0.036$. No calculation for $T_{1/2}(\beta^+)$ of ²⁰²Ra is given In 1997MoZW.

¹⁹⁸Rn Levels

E(level)	J^{π}	T _{1/2}	Comments		
0	0+	3.8 ms +13	$\frac{7-8}{7-8} = \frac{7}{7} \frac{7}{1/2}$ Measured by 2014Ka23. $E\alpha = 7198 \ 6 \text{ from } \alpha \text{ decay of } ^{198}\text{Rn to } ^{194}\text{Po } (2014\text{Ka23}).$		
α radiations					
Eα	E(level)) HF [†]	Comments		
7722 7	0	1.0	E α : From 2014Ka23. Others: 7740 keV 20 (2005Uu02), 7860 keV 60 (1996Le09). I α : Only one α group has been observed. I α =100% is assumed.		

Reduced α width $\delta_{\alpha}^2 = 210 \text{ keV} + 70-50 (2014\text{Ka23}), 44 \text{ keV} + 83-20 (2005\text{Uu02}), 430 \text{ keV} + 2020-260 (1996\text{Le09}).$

[†] Requirement of HF(7860 α)=1.0 gives $r_0(^{198}Rn)=1.569 + 20-14$ (1996Le09).