## (HI,xnγ):SD 2001Pr06,2004Re08

| History         |                                  |                     |                        |  |  |  |
|-----------------|----------------------------------|---------------------|------------------------|--|--|--|
| Туре            | Author                           | Citation            | Literature Cutoff Date |  |  |  |
| Full Evaluation | Huang Xiaolong and Kang Mengxiao | NDS 133, 221 (2016) | 1-Dec-2015             |  |  |  |

<sup>198</sup>Pb Levels

See also 1991Wa14, 1994Cl02, 1996Hi13.

2001Pr06: <sup>186</sup>W(<sup>18</sup>O,6n $\gamma$ ), E=117 MeV; measured  $\gamma$ -ray with EUROBALL spectrometer comprising an inner-ball of 210 BGO crystals, and 71 Compton-suppressed Ge detectors which represent 239 Ge individual crystals.

1991Wa14: <sup>154</sup>Sm(<sup>48</sup>Ca,4n $\gamma$ ) E=205, 210 MeV. Population of SD band through  $\gamma$  and  $\gamma\gamma$  studies. The SD-1 band identified from excitation function data and other characteristics. It is populated with 1% intensity of the total for <sup>198</sup>Pb.

Population of this SD-1 band is not verified in later work of 1992ZwZZ, so it is considered uncertain.

1994Cl02: <sup>186</sup>W(<sup>18</sup>O,6n $\gamma$ ) E=113 MeV. Measured E $\gamma$ , I $\gamma$ ,  $\gamma\gamma\gamma$ , SD band using EUROGAM array (43 detectors).

1996Hi13: <sup>186</sup>W(<sup>18</sup>O,6n $\gamma$ ) E=115 MeV. Measured E $\gamma$ , I $\gamma$ ,  $\gamma\gamma\gamma$ , SD band using EUROGAM array of 30 large HPGe detectors and 24 "Clover" detectors.

| E(level)                     | $J^{\pi}$           | E(level)                        | J <sup>π</sup> @ | E(level)                 | J <sup>π @</sup> |
|------------------------------|---------------------|---------------------------------|------------------|--------------------------|------------------|
| 0+x <sup>†</sup> &           | J≈(12) <sup>#</sup> | 9121.7+x <sup>&amp;</sup> 21    | J+30             | 7529.0+y <sup>a</sup> 20 | 38               |
| 304.4+x <sup>&amp;</sup> 5   | J+2                 | 0+y <sup>†a</sup>               | 10‡              | $0+z^{\dagger b}$        | 8‡               |
| 652.1+x <sup>&amp;</sup> 7   | J+4                 | 281.4+y <sup><i>a</i></sup> 6   | 12               | 215.8+z <sup>b</sup> 6   | 10               |
| 1042.4+x <sup>&amp;</sup> 9  | J+6                 | 605.5+y <sup>a</sup> 8          | 14               | 475.4+z <sup>b</sup> 8   | 12               |
| 1474.8+x <sup>&amp;</sup> 10 | J+8                 | 971.1+y <sup>a</sup> 10         | 16               | 778.0+z <sup>b</sup> 10  | 14               |
| 1948.6+x <sup>&amp;</sup> 11 | J+10                | 1377.8+y <sup>a</sup> 11        | 18               | 1122.6+z <sup>b</sup> 11 | 16               |
| 2463.2+x <sup>&amp;</sup> 12 | J+12                | 1825.7+y <sup>a</sup> 12        | 20               | 1508.9+z <sup>b</sup> 12 | 18               |
| 3018.0+x <sup>&amp;</sup> 13 | J+14                | 2313.9+y <sup>a</sup> 13        | 22               | 1937.4+z <sup>b</sup> 13 | 20               |
| 3651.4+x <sup>&amp;</sup> 14 | J+16                | 2841.8+y <sup><i>a</i></sup> 14 | 24               | 2406.2+z <sup>b</sup> 14 | 22               |
| 4323.2+x <sup>&amp;</sup> 15 | J+18                | 3409.0+y <sup>a</sup> 15        | 26               | 2914.4+z <sup>b</sup> 15 | 24               |
| 5032.6+x <sup>&amp;</sup> 16 | J+20                | 4014.4+y <sup>a</sup> 16        | 28               | 3462.2+z <sup>b</sup> 16 | 26               |
| 5779.3+x <sup>&amp;</sup> 17 | J+22                | 4656.2+y <sup>a</sup> 17        | 30               | 4048.6+z <sup>b</sup> 17 | 28               |
| 6562.0+x <sup>&amp;</sup> 17 | J+24                | 5332.5+y <sup>a</sup> 17        | 32               | 4672.4+z <sup>b</sup> 17 | 30               |
| 7380.5+x <sup>&amp;</sup> 18 | J+26                | 6038.2+y <sup><i>a</i></sup> 18 | 34               | 5332.4+z <sup>b</sup> 18 | 32               |
| 8231.7+x <sup>&amp;</sup> 20 | J+28                | 6769.9+y <sup>a</sup> 19        | 36               | 6028.2+z <sup>b</sup> 19 | 34               |

<sup>†</sup> Band head energy undetermined.

<sup>‡</sup> From theoretical calculations and comparisons with known configurations of the neighbouring nuclei (2004Re08).

<sup>#</sup> Spin-fit method gives  $J \approx (12)$  (1994Cl02).

<sup>@</sup> From feeding of normal deformed states (2001Pr06,1996Hi13) and rotational model fits to  $E\gamma'$ s within a superdeformed band and assuming  $\Delta J=2$  for transitions between levels.

<sup>&</sup> Band(A): SD-1 band (2001Pr06,1996Hi13,1994Cl02,1991Wa14). Percent population≈0.5 (1996Hi13), ≤0.5 (1994Cl02), 1.0 (1991Wa14), 0.5 (2001Pr06).

<sup>a</sup> Band(B): SD-2 band (2001Pr06). band-head spin: 10 (2004Re08).

<sup>b</sup> Band(C): SD-3 band (2001Pr06). band-head spin: 8 (2004Re08).

|                        |                        |                      |          | (ΗΙ, xnγ):SD         |                        | 2001Pr06,2004Re08 (continued |                      |          | l)                     |
|------------------------|------------------------|----------------------|----------|----------------------|------------------------|------------------------------|----------------------|----------|------------------------|
|                        |                        |                      |          |                      |                        | $\gamma(^{198}\text{Pb})$    |                      |          |                        |
| $E_{\gamma}^{\dagger}$ | E <sub>i</sub> (level) | $\mathbf{J}_i^{\pi}$ | $E_f$    | $\mathbf{J}_f^{\pi}$ | $E_{\gamma}^{\dagger}$ | E <sub>i</sub> (level)       | $\mathbf{J}_i^{\pi}$ | $E_f$    | $\mathbf{J}_{f}^{\pi}$ |
| 215.8 6                | 215.8+z                | 10                   | 0+z      | 8                    | 547.8 5                | 3462.2+z                     | 26                   | 2914.4+z | 24                     |
| 259.6 5                | 475.4+z                | 12                   | 215.8+z  | 10                   | 554.8 5                | 3018.0+x                     | J+14                 | 2463.2+x | J+12                   |
| 281.4 6                | 281.4+y                | 12                   | 0+y      | 10                   | 567.2 5                | 3409.0+y                     | 26                   | 2841.8+y | 24                     |
| 302.6 5                | 778.0+z                | 14                   | 475.4+z  | 12                   | 586.4 5                | 4048.6+z                     | 28                   | 3462.2+z | 26                     |
| 304.4 5                | 304.4+x                | J+2                  | 0+x      | J≈(12)               | 605.4 5                | 4014.4+y                     | 28                   | 3409.0+y | 26                     |
| 324.1 5                | 605.5+y                | 14                   | 281.4+y  | 12                   | 623.8 5                | 4672.4+z                     | 30                   | 4048.6+z | 28                     |
| 344.6 5                | 1122.6+z               | 16                   | 778.0+z  | 14                   | 633.4 5                | 3651.4+x                     | J+16                 | 3018.0+x | J+14                   |
| 347.7 5                | 652.1+x                | J+4                  | 304.4+x  | J+2                  | 641.8 5                | 4656.2+y                     | 30                   | 4014.4+y | 28                     |
| 365.6 5                | 971.1+y                | 16                   | 605.5+y  | 14                   | 660.0 5                | 5332.4+z                     | 32                   | 4672.4+z | 30                     |
| 386.3 5                | 1508.9+z               | 18                   | 1122.6+z | 16                   | 671.8 5                | 4323.2+x                     | J+18                 | 3651.4+x | J+16                   |
| 390.3 4                | 1042.4+x               | J+6                  | 652.1+x  | J+4                  | 676.3 5                | 5332.5+y                     | 32                   | 4656.2+y | 30                     |
| 406.7 5                | 1377.8+y               | 18                   | 971.1+y  | 16                   | 695.8 6                | 6028.2+z                     | 34                   | 5332.4+z | 32                     |
| 428.5 5                | 1937.4+z               | 20                   | 1508.9+z | 18                   | 705.7 5                | 6038.2+y                     | 34                   | 5332.5+y | 32                     |
| 432.4 5                | 1474.8+x               | J+8                  | 1042.4+x | J+6                  | 709.4 5                | 5032.6+x                     | J+20                 | 4323.2+x | J+18                   |
| 447.9 5                | 1825.7+y               | 20                   | 1377.8+y | 18                   | 731.7 5                | 6769.9+y                     | 36                   | 6038.2+y | 34                     |
| 468.8 5                | 2406.2+z               | 22                   | 1937.4+z | 20                   | 746.7 5                | 5779.3+x                     | J+22                 | 5032.6+x | J+20                   |
| 473.8 5                | 1948.6+x               | J+10                 | 1474.8+x | J+8                  | 759.1 6                | 7529.0+y                     | 38                   | 6769.9+y | 36                     |
| 488.2 5                | 2313.9+y               | 22                   | 1825.7+y | 20                   | 782.7 5                | 6562.0+x                     | J+24                 | 5779.3+x | J+22                   |
| 508.2 5                | 2914.4+z               | 24                   | 2406.2+z | 22                   | 818.5 6                | 7380.5+x                     | J+26                 | 6562.0+x | J+24                   |
| 514.6 5                | 2463.2+x               | J+12                 | 1948.6+x | J+10                 | 851.2 7                | 8231.7+x                     | J+28                 | 7380.5+x | J+26                   |
| 527.9 5                | 2841.8+y               | 24                   | 2313.9+y | 22                   | 890.0 8                | 9121.7+x                     | J+30                 | 8231.7+x | J+28                   |

 $^{\dagger}$  From 2001Pr06. See also 1996Hi13, 1994Cl02 and 1991Wa14 for  $\gamma\text{-ray}$  of SD-1 band.

## (HI,xnγ):SD 2001Pr06,2004Re08

# Level Scheme



 $^{198}_{82} \rm{Pb}_{116}$ 

# (HI,xnγ):SD 2001Pr06,2004Re08

# Level Scheme (continued)



<sup>198</sup><sub>82</sub>Pb<sub>116</sub>

#### (HI,xnγ):SD 2001Pr06,2004Re08

|                  |       |                      |                                                       | Band(C): SD-3 band<br>(2001Pr06)                                 |
|------------------|-------|----------------------|-------------------------------------------------------|------------------------------------------------------------------|
|                  |       |                      |                                                       | <u>34 6028.2+z</u>                                               |
|                  |       |                      |                                                       | <u>32</u> <sup>696</sup> 5332.4+z                                |
|                  |       |                      |                                                       | <u>30</u> 660 4672.4+z                                           |
|                  |       |                      |                                                       | <u>28 <sup>624</sup> 4048.6+z</u>                                |
|                  |       |                      |                                                       | $\frac{26}{24}$ $\frac{586}{3462.2+z}$ $\frac{3462.2+z}{24}$     |
|                  |       |                      |                                                       | $\frac{24}{22} - \frac{548}{508} - \frac{2914.442}{2406.2+z}$    |
|                  |       |                      |                                                       | $\frac{20}{18} \sqrt{\frac{469}{469}} \frac{1937.4+z}{1508.9+z}$ |
|                  |       |                      |                                                       | <u>16</u> <u>428</u> <u>1122.6+z</u>                             |
|                  |       |                      | (2001Pr06)                                            | and $14 \ 386 \ 778.0+z \ 12 \ 345 \ 475.4+z$                    |
|                  |       |                      | 38 7529.0                                             | $0+y$ $\frac{10}{8}$ $\frac{303}{215.8+z}$ $0+z$                 |
|                  |       |                      | 36 <sup>759</sup> 6769.9                              | 9+y                                                              |
|                  |       |                      | 34 <sup>732</sup> 6038.2                              | <br>2+y                                                          |
|                  |       |                      | 32 <sup>706</sup> 5332.4                              | <br>5+y                                                          |
|                  |       |                      | 30 <sup>676</sup> 4656.2                              | 2+y                                                              |
|                  |       |                      | 28 642 4014.4                                         | 4+y                                                              |
|                  |       |                      | 26 605 3409.0                                         | 0+y                                                              |
|                  |       |                      | 24 567 2841.8                                         | 8+y                                                              |
|                  |       |                      | 22 528 2313.9                                         | 9+y                                                              |
| Band(A)          | ): SD | -1 band              | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$ | <del>8+y</del>                                                   |
| (2001Pr(         | 06,19 | 96Hi13,              | $\frac{16}{407} \frac{440}{605} 971.1$                | <u>1+y</u>                                                       |
| 1994C10.         | 2,195 | 71 wa14)             | $\frac{14}{12}$ $\frac{366}{281.4}$                   | <del>4+y</del>                                                   |
| +30              |       | 9121.7+x             | $10  \frac{324}{281}  ($                              | 0+y                                                              |
| +28 <sup>8</sup> | 90    | 8231.7+x             |                                                       |                                                                  |
| +26              | 51    | 7380.5+x             |                                                       |                                                                  |
| +24              | 18    | 6562.0+x             |                                                       |                                                                  |
| +22 7            | 83    | 5779.3+x             |                                                       |                                                                  |
| +20 7            | 47    | 5032.6+x             |                                                       |                                                                  |
| +18 7            | 09    | 4323.2+x             |                                                       |                                                                  |
| +16 6            | 72    | 3651.4+x             |                                                       |                                                                  |
| +14 6            | 33    | 3018.0+x             |                                                       |                                                                  |
| +12 5            | 55    | 2463.2+x             |                                                       |                                                                  |
| +10 5            | 15    | 1948.6+x             |                                                       |                                                                  |
| +0 4<br>+6 4     | 74    | 1474.8+x<br>1042.4+x |                                                       |                                                                  |
| +4 4             | 90    | 652.1+x              |                                                       |                                                                  |
| +2 3             | 48    | 304.4+x              |                                                       |                                                                  |
| ≈(12) <u>3</u>   | 04    | 0+x                  |                                                       |                                                                  |

J+30

J+28

<u>J+26</u>

J+24

J+22

<u>J+20</u>

J+18

J+16

J+14

J+12

J+10 J+8

J+6

J+4  $\frac{\overline{J+2}}{J\approx(12)}$ 

 $^{198}_{82} \rm{Pb}_{116}$