$^{202}\mathbf{Po}~\alpha$ decay

History								
Туре	Author	Citation	Literature Cutoff Date					
Full Evaluation	Huang Xiaolong and Kang Mengxiao	NDS 133, 221 (2016)	1-Dec-2015					

Parent: ²⁰²Po: E=0; $J^{\pi}=0^+$; $T_{1/2}=44.6 \text{ min } 4$; $Q(\alpha)=5701.1 \ 17$; $\%\alpha \text{ decay}=1.92 \ 7$

T_{1/2}(²⁰²Po)=44.6 min 4 was from weighted average of 44.7 min 5 (1993Wa04), 45.0 min 15 (1971Ho01,1965Ti03), 43.7 min 13 (1970DaZM). Others: 44 min (1965Br17).

 α branching of 1.92% 7 adopted here is based on parent-daughter (E α_1 ⁽²⁰⁶Rn)-E α_2 ⁽²⁰²Po)) correlations and their ratio of α intensities (1993Wa04). Others: 2.2% 3 (1971Ho01), 2.0% 2 (1967Le21), 2% (1965Br17).

¹⁹⁸Pb Levels

$E(level)^{\dagger}$	J^{π}
0.0	0^{+}

[†] From Adopted Levels.

 α radiations

Eα	E(level)	$I\alpha^{\dagger \#}$	HF [‡]	Comments
5588.1 <i>17</i>	0.0	100	1.0	<i>Eα</i> : 5587.2 <i>14</i> is recommended in 1991Ry01 from the measured values (energies are adjusted for changes in calibration energies, as suggested by 1991Ry01): 5583 <i>10</i> (1963Ho18), 5587 <i>5</i> (1967Ti04), 5579 <i>5</i> (1967Tr06), 5588 <i>2</i> (1968Go12), 5590 <i>5</i> (1970Jo26) and 5589 <i>3</i> (1970Ra14). From the recommended Q(<i>α</i>) of 5701.1 <i>17</i> $E\alpha$ =5588.1 <i>17</i> is calculated. <i>Iα</i> : only one <i>α</i> group has been observed. Upper limits on intensities for unobserved <i>α</i> transitions to the 2 ⁺ , 1063.5-keV level and to the 0 ⁺ , 1392.1-keV level are obtained by requiring their hindrance factors to be greater than 1: $I\alpha$ (4545.7 <i>α</i> to 2 ⁺ state)<8×10 ⁻⁵ , $I\alpha$ (4223.6 <i>α</i> to 0 ⁺)<4×10 ⁻⁷ per 100 <i>α</i> decays.

[†] α intensity per 100 α decays. [‡] $r_0(^{198}Pb)=1.4719$ 20 is calculated from HF(5588.1 α)=1.0.

[#] For absolute intensity per 100 decays, multiply by 0.0192 7.